学年

教科

質問の種類

物理 高校生

物理力学の質問です。 問2の式の右辺の成り立ちの意味がわからないため教えてください。

(14. センター追試 [物理Ⅰ] 改) ☆☆☆ 思考 判断 表現 13 摩擦のある水平面上の運動 5分 図のように、粗い水平な床 m F の上の点0に、質量mの小物体が静止している。この小物体に、 床と角度をなす矢印の向きに一定の大きさFの力を加えて、点 0から距離にある点Pまで床に沿って移動させた。小物体が点 Pに達した直後に力を加えることをやめたところ、 小物体はだけすべって、 点Qで静止した。ただ し、小物体と床の間の動摩擦係数をμ'′ 重力加速度の大きさをgとする。 問1点0から点Pまで動く間に、 小物体が床から受ける動摩擦力の大きさを表す式として正しいも のを、次の①~⑦のうちから一つ選べ。 ① μ'(mg+Fsin0) ②μmg-F'sin0) ③μ'(mg+Fcose) ④μ'(mg-Fcose) ⑤μ'(mg+F) ⑥μ'(mg-F) ⑦ μ'mg 小物体が点Pに到達したときの速さをfを用いて表す式として正しいものを、次の①~⑥のうち から一つ選べ。 「21(F+f) 21 (Fsin0+f) 21(Fcose+f) ① (2) ③ m m m 21(F-f) 21(Fsine-f) 21(Fcose-f) ④ ⑤ ⑥ m m m 問3 小物体が動き始めてから点Qに到達するまで、 点0と小物体との距離を時間の関数として表した グラフとして最も適当なものを、次の①~④のうちから一つ選べ。 さい a 距離 ① 距離 ② 距離 距離 ④ 1+1'1 1+1'1 1+1'1 1+1' 301 1 I 時間 時間 時間 時間 ( 13. センター本試 [物理Ⅰ] 改)

未解決 回答数: 1
物理 高校生

一次不定方程式です! 解き方を教えてくれると嬉しいです!

次の等式を満たす整数x,yの組を1つ求めよ。 121 1次不定方程式の整数解(1) 本例題 425 OOOのの (1) 11x+19y=1 (2) 11x+19y=5 423 基本事項3 基本122 CHART OSOLUTION 1次不定方程式の整数解 ユークリッドの互除法の利用 11と19 は互いに素である。。まず, 等式 11x+19y=1 のxの係数11とyの 係数19に互除法の計算を行う。その際, 11<19 であるから, 11 を割る数, 19 を割られる数として割り算の等式を作る。 a=11, b=19 とおいて, 別解のように求めてもよい。 (2) xの係数とyの係数が(1)の等式と等しいから, (1)を利用できる。 (1)の等式の両辺を5倍すると よって,(1)で求めた解をx=p, y=q とすると, x=5p, y=5q が (2) の解に 11(5x)+19(5y)=5 なる。 解答 移項すると 移項すると 移項すると 移項すると 1=3-2-1=3-(8-3-2)-1 =8-(-1)+3-3=8-(-1)+(11-8-1)-3 8=x =11-3+8-(-4)=11·3+(19-11·1).(-4) =11·7+19·(一4) (0) 19=11·1+8 11=8·1+3 8=19-11·1 3=11-8-1 2=8-3-2 別解(1) a=11, b=19 パーとする。 8=19-11-1=6-a 3=11-8-1 8=3-2+2 3=2·1+1 1=3-2-1 -aー(b-a)=2aーb |2-8-3-2 ー(b-a)-(2a-b)-2 よって =-5a+36 1=3-2-1 =(2a-b)-(-5a+36)-1 すなわち 1.7+19-(-4)=1 …0 ゆえに、求める整数x, yの組の1つは -7a-46 すなわち 11-7+19-(-4)=1) よって,求める整数x,yの 組の1つは x=7, y=-4 x=7, y=-4 (2) 0の両辺に5を掛けると 11-(7-5)+19-{(-4).5}=5 11-35+19-(-20)35 よって,求める整数x, yの組の1つは *=35, y=-20 すなわち る。このような解が最初に発見できるなら, それを答と してもよい。

回答募集中 回答数: 0