学年

教科

質問の種類

物理 高校生

3枚目の写真の緑のマーカーで囲った※Bの部分の言っていることが分からないので教えてほしいです。

64.〈ピストンで封じられた気体分子の運動〉 なめらかに動くピストンがついた容器内に質量mの単原子分子 からなる理想気体が封入されている。 ピストンおよび容器は断熱材 でできている。図に示すように x, y, z軸をとり, 容器の断面積は 一様であるとする。 次の問いに答えよ。 〔A〕 まず,ピストンが固定されており, ピストンの底部は容器の 底からんの距離にある場合を考える。 (1)容器内のある1個の気体分子を考え,そのz軸方向の速さを ひとする。分子がピストンに弾性衝突したときピストンが受 ける力積の大きさを求めよ。 (2) (1)において1個の分子がある時間 4t にピストンに衝突する回数を答えよ。 (3)(2)においてN個の分子によって 4tの間にピストンが受ける平均の力の大きさを答 えよ。ただし,気体分子全体のvzの2乗の平均 22 を用いよ。 〔B〕 次に,ピストンをz軸の負の向きにより十分に小さい一定の速さで押しこんだ 場合を考える。なお理想気体では, 内部エネルギーは各気体分子の運動エネルギーの総和 となる。 z軸方向の速さvz の1個の分子がピストンに弾性衝突した後の軸方向の分子の速さ vz を求めよ。 また,衝突前後の分子の運動エネルギーの変化量⊿u を答えよ。この際, 1± b b は十分小さいことより (10) = 0 という近似が成りたつことを用いよ。 Vz Vz Vz Vz (54)において⊿t の間のN個の分子の運動エネルギー変化の合計 4U を v22 を用いて答 えよ。 ただし, 4t の間のピストンの移動距離はんに比べて十分小さいものとする。 〔A〕のときの容器の体積を V,気体の温度を T, 内部エネルギーをひとおく。また, 4tの間の体積の変化を⊿V, 温度の変化を⊿T とする。 気体分子全体の速さ”の2乗 44 が成りたつこと の平均をとしたときが成りたつこと,また, U を用いて 4 を 4T, T を用いて表せ。 AV V 記 (7/3)で求めたを用いて、4tの間に気体がピストンにされた仕事⊿W を答えよ。 また, この結果を(5) と比較して,気体を断熱圧縮したとき,気体がされた仕事と運動エネルギ ーの関係について説明せよ。 [23 埼玉大改]

解決済み 回答数: 1
物理 高校生

(3)の三枚目の写真のR’-Rの式がよく分かりません

At t であ 物理 問題Ⅱ 図1のような長さL. 断面積 S, 抵抗値Rの抵抗体 X を考える。この抵抗体Xの左 右の端に大きさVの電圧をかけたとき、抵抗体Xの内部には一様な電場(電界) が生じ るものとする。 自由電子は電場から力を受けて一定の加速度で運動し、抵抗体X内の イオンなどと衝突し、 いったん静止する。 この衝突が一定の時間間隔で繰り返し起こ ると仮定すると、 自由電子の速さは時刻に対して図2のように変化する。 自由電子1個 の質量を電気量e (e>0) 抵抗体Xの単位体積に含まれる自由電子の個数を とする。 S 抵抗体 X 図 1 L 設問(1) 以下の文章が正しい記述になるように, (あ~か)に入る適切な数式をL.S.V. em,n, Tのうち必要なものを用いて表せ。 ( 抵抗体 Xの内部に生じる電場の強さは の大きさは (あ) なので,自由電子の加速度 であり自由電子の平均の速さは (う) 一方、この抵抗体Xの断面を時間の間に通過する自由電子の数は xv4t なので、この抵抗体 X を流れる電流の大きさは したがって, 抵抗体 X の抵抗率は (カ) となる。 である。 (え) (お) xvとなる。 この抵抗体 X に力を加えると,長さはL+4L (4L>0) になり, 断面積はS-AS (4S>0) になった。 この変形において、抵抗体 X の抵抗率は変化しないものとする。 ただし, LAL, S4Sとし, 1>|x|のとき (1+x)=1+pxの近似式を用い,また,微 小量どうしの積を無視するものとする。 設問(2) 抵抗体 X の長さがL+4L, 断面積がS-4Sのときの抵抗値R' を R, L, 4L, S, 4S を用いて表せ。 設問(3) 力が加わり変形しても抵抗体 X の体積が変化しないものとして, R'-R を R, L, 4L を用いて表せ。 速さ ・時刻 T 2T 3T 図2

解決済み 回答数: 2
物理 高校生

4の問題でこのようにしてはいけない理由をお願いします🙇‍♀️

2 /図のように, 半径の細い円形リングが鉛直面内にある。 その頂点を A. 最下 点をBとする。 このリングに, 小さな穴の開いた質量mの小球Pを通し, リン グに沿って運動できるようにした。 リングの中心を0とし.鉛直下方から測っ たPの角度を0とする。 重力加速度の大きさをgとして,以下の問いに答えな さい。ただし,小球Pとリングの間の摩擦は無視できるものとする。 また、必 要があれば三角関数に関する次の公式および近似式を用いてよい。 なお, 角度は ラジアンを単位として表す。 sin (a + β) = sin a cos β + cos a sin B cos (a + β) = cos a cos β - sin a sin β lal < 1 のとき, sin α = α, cosa ≒ 1 A O B 図 はじめ、リングは固定されていた。 リング mg. mrw² = mg case, ing gcasOr W mrw² = [ar] W √ geaso, r 問1 リングの接線方向の小球Pの加速度をaとし, 8が増加する向きを加速 度の正の向きとする。 リングの接線方向の小球Pの運動方程式を, m,g, を,g,r, 0, のうち必要な記号を用いて表しなさい。 次に,リングを一定の角速度」 で軸AB のまわりに回転させた。 小球Pの位 置を調節したところ,ある角度=0(0<0, 1)を保った。 問5 小球Pがもつ力学的エネルギーをm,g,r, 0, のうち必要な記号を用

解決済み 回答数: 1
物理 高校生

物理の円運動についての質問です。 (1)(a)で、速さvを求めるときに解説では力学的エネルギーの保存の式を立てていますが、これを運動方程式mv^2/r=mgsinθで求めようとすると正答になりません。mgsinθが向心力ではないからでしょうか。 また、解説の図aの点線矢印m... 続きを読む

B....... 2 51. 〈半球内での物体の円運動〉 内半径Rの半球が,図1のように切り口を水平にして固定半球 されている。座標軸は,半球の中心Oを原点とし, z軸を鉛直 方向に, xy平面を半球の切り口にとる。 この半球の内面に接 して運動する質量 mの小球について考える。ただし, 小球と 半球の内面との間の摩擦および小球の大きさは無視できるもの とする。重力加速度の大きさをgとして,次の問いに答えよ。 (1) 図2のように, 小球が半球の内面に接して xz 平面内を運動 する場合を考える。 (a)z軸となす角度が0の位置から小球を静かにはなすとき, 角度0の位置における小球の速さ”および加速度の進行 方向成分αの大きさを, R, m, g, 0, 0 の中から必要な ものを用いて表せ。 (b) 6 が十分小さいとき, 往復運動の周期 T を, R, m, g の 中から必要なものを用いて表せ。 なお、 この場合, sin00 が成りたっているものとする。 (2) 図3のように、小球は半球の内面を半径rの円を描いて一 定の速さで水平に回っている。 (a) このときの円運動の角速度 1 を R,m,r, g の中から i/ Fi .) ... x 小球 m R MOOER 図 1 AZ 10 Oo` 0 図2 AZ lo 応用問題 R m x x

解決済み 回答数: 2
1/3