学年

教科

質問の種類

物理 高校生

37のスについて 解答でキルヒホッフ第2の法則を用いていますが、どこの閉回路についてなのでしょうか?

さの方向(Bの方向とPの運動方向の両方に垂直な方向) に大きさがの 端には起電力が生じる。 このとき, Pの内部の電場の大きさは であり、 (イ) 力を受ける。 その結果, Pの片側は電子が過剰になって負に帯電しPの画 この電場から電子が受ける力の大きさはエ)である。 電場から電子が受ける力 と電子に働く (イ) 力はつりあうと考えてよいので、V=(オ)が得られる。 (2) 次にSが閉じている場合を考える。 Pの支えをはずすと同時に, P, Q に初速度 での間, PとQは速さ uo の等速運動を行った。 このときQが1秒間に失う位置エネ uo を与えるようにQを鉛直方向に引きおろしたところ, Pがレールの端に達するま 秒間にRで発生する熱量は() となる。 等速運動では, P, Qの運動エネルギー ルギーは (カ) である。 また. この運動中, R の両端の電位差は (キ)であり,1 (秋田大) が変化しないことを考慮すると, uo は (ケ) となることがわかる。 212 図に示すように電圧e [V] の交 電源電圧 E〔V〕 の直流電源E, 抵抗値がそれぞれ R [Ω], R2 〔9〕, a R3 [Ω] の抵抗 Rs, R2, R3, 電気容量 C [F] E のコンデンサー C. 鉄心に巻かれたコイル (37 鉄心 R₁ Sis INT R₂ S₁ S₂ S, コイル2 12.0 コイル1 1とコイル2およびスイッチ S1,S2, S3, S, で構成される回路がある。ここで, コイル 1, コイル2および電源の抵抗は考えな いものとする。また,コイル1の自己インダクタンスをム [H], コイル1とコイル 2 の相互インダクタンスを M [H] (M> 0) とする。最初, コンデンサーには電荷がな く,すべてのスイッチは開いた状態にあるとして,以下の文章中の を埋めよ。 なお,図中で電圧 e, E, v1, v2 と電流 is, i2, is の正方向はそれぞれに付けている矢印 により定義する。電圧の矢印は矢の根元に対する矢の先端の電圧を表し,例えば図の 電圧eは, a点の電位がb点の電位より高いと正である。 電流は, 矢印の方向に正電 荷が移動している場合を正とする。 (1) スイッチ S と S3 だけを同時に閉じた。 このとき抵抗R に流れる電流は, [ア][A] である。コンデンサーのスイッチ S3側の極板の電荷をqとすると, q は (イ) [C] である。 gが微小時間 ⊿t[s] の間に 4g 〔C〕 だけ変化するとすれば、 コンデンサーに流れる電流はこれらを用いて,(ウ) 〔A〕 と表される。 交流電源 の電圧が, e=Eosinwt で与えられるときは (エ) 〔A〕 と求められる。ただし, E〔V〕 およびω 〔rad/s] は定数, t [s] は時間である。 交流電圧 Eosinwt の実効値 は (オ) [V] , 周波数が60 [Hz] の電源の場合, ω は (カ) [rad/s] となる。 (2) 次に, スイッチ S と S3 を開いてからスイッチ S2とS を同時に閉じたところ、 コイルに流れる電流 is は徐々に増加し, しばらくすると一定の値になった。 なお, コイル2の端子c, d には何も接続していない。 電流が微小時間 4t 〔s] の間に ⊿is 〔A〕 だけ変化したとき, コイル1の両端に生じる電圧 vi は, (キ) [V] で, 図 の電圧v2 は (ク) 〔V〕 である。 このように, コイル1によってコイル2に電圧が (A) で, 電流はえを用いると (サ) [A] である。 また、このときの電圧 2 は 生じる現象は (ケ) とよばれる。 電流が一定の定常状態では、電流は [V] である。 is 04 (A) 11:28, 10, 12(V), BE P その後, スイッチ S は閉じたままスイッチ S2を開いたところ、電流は徐々に 減少した。 この電流の は (セ)[V] である。 (長崎大) 内部抵抗が無視できる電圧E [V] の 直流電源 E, 抵抗値R [Ω] の抵抗 R, 自 己インダクタンスL[H] のコイルL 気容量がC〔F〕 のコンデンサーCからなる図1 (38) の回路について,以下の問いに答えよ。 ただし, 初期状態では、スイッチは中立の位置bにあ コンデンサーは帯電していないものとする。 り、 また, 抵抗に流れる電流 IR 〔A〕 およびコイルに流れる電流 [A] は、図1の矢印の とする。 1 向きを正の向きと (1) 初期状態から, Sをaに接続した直後に, 抵抗に流れる電流 IR [A] を求めよ。 (5) (2) コンデンサーの極板間の電圧V[V] [V] になったときの電流 IR [A] を求めよ。 ・t 175/1 (③) 十分に時間が経ったときの電流 IR [A] を求めよ。 (4) 電流 IR 〔A〕 と時間 t [s] の関係を表すグラフはどれか。 図2の①〜 12 のうちから 正しいものを一つ選べ。 ただし, Sをaに接続したときを t=0 とする。 20 6 t R M W 9 10 0 C. OF 図1 -t LL 8 AM 12 第4章 電気と磁気 図2 (5) 十分に時間が経ったときのコンデンサーにたまっている電気量 Q [C] を求めよ。 (6) 十分に時間が経った後, Scに接続したとき、 コイルに流れる電流と時間 の関係を表すグラフはどれか。 図2の①〜 12 のうちから正しいものを一つ選べ。 た だし,Sをcに接続したときを t=0 とする。 (7) (6)における電流 [A] の最大値を求めよ。 (福井大) 演習問題 213

未解決 回答数: 1
物理 高校生

(4)について質問です。 ベクトル図で考え、tanθ=R(ωC-1/(ωL))と逆にして書いたのですが、これは正解なのでしょうか? ωCV_0とV_0/ωLの大小が分からないので正解だろうと予想しましたが、 不安だったので質問しました。

138. 〈RLC 並列回路〉 10) 図のような, 交流電源, コイル, コンデンサー, 抵抗からなる 回路について考える。 交流電源の交流電圧の最大値を Vo〔V〕, 角 周波数をw [rad/s〕, コンデンサーの電気容量をC[F], コイルの 自己インダクタンスをL [H], 抵抗をR [Ω], 円周率をとする。 電流は図の矢印の向きを正とする。 また時刻 t〔s〕において交流 電源の電圧 V〔V〕はV=Vosinwt, 交流電源から流れる電流は I〔A〕であるとする。コイル, コンデンサー,抵抗に流れる電流 をそれぞれ IL 〔A〕, Ic〔A〕, IR〔A〕 とし, その最大値をそれぞれ ILo〔A〕, Ico〔A〕, Iko〔A〕 とす る。十分な時間が経過しているとして,次の問いに答えよ。 (1) 電流の最大値 Ito, Ico, Iro をそれぞれ Vo, w, C, L, R の中から必要なものを用いて表せ。 (2) 時刻 t において, 流れる電流I, Ic, In をそれぞれ Ito, Ico, IRo, w, tの中から必要なも のを用いて表せ。 (3) 電流 I を I, Ic. IR を用いて表せ。 (4) 0 [rad〕を電圧(Vの位相に対する電流の位相の遅れとして, I を Vo, w, C, L, R, t, Qを用いて表せ。また, tanθ を w, C, L, R を用いて表せ。 次の三角関数の公式を用いて もよい。 asinx-bcosx=√a²+busin (x-9), cos0= a √a² +6² [ 10 大阪教育大 〕 9 IL VIC L C b √a² + b² sing= VIR (5) 図の回路のうち, コイル, コンデンサー, 抵抗からなる並列回路のインピーダンス Z〔K〕 をw, C, L, R を用いて表せ。 (6) (5)のインピーダンスZが最大となるような角周波数 wo [rad/s] を求めよ。 [20 福井大

解決済み 回答数: 1
物理 高校生

答えは3枚目です。問2から7までの解説をしてもらいたいです。めんどくさいと思うのですがどなたかよろしくお願いします……

図のように, 水平な床の 同じ質量 巡の物体B が置いて 体B に水平右向きで大ききがかpの力を加えた ときに, これらの物体がどのよう 運動をするか考えてみよう。ただし. 床と台A の問. およょび人台A と物体B の問には麻近力がはたらく ものとし, 床と台 A の間の静下摩擦係 数と動摩擦係数をそれぞれととし 台A と物体 B の問の末止摩擦係数と動導 失係数をそれぞれん。 と ん。 とする。 台A と物体は回転しないものとし, 物体Bは 台A から落ちないものとし 守気導抗は無視できるものとする。 水平方向の力, 速度, および加速度は. 水平右向きを正の向きとし, 重力加吉度の大ききを9 とする。 以下 の問いに答えよ。 物体B 台A トニー 問1 が王のとき, 床に対して可Aと物体B は和静止していた。このとき., 台Aが床 から受ける摩擦力の大きき 尺, および物体Bが台A から受ける摩捧力の大きさ AR を答え, それぞれの摩擦力の向きも答えよ。 間2 7を万からしだいに大きくしていったところ. 物体B は台A の上をすべること なく, 台Aと物体B が一体となって床の上をすべり始めた。このようにすべり始め るためには. ん、 と /』 は次の不等式を済たさきなければならない。 以下の|に当 ではまる数値を答えよ。 物体8 が台A の上をすべることなく. 台Aと物体B が一体となって) :いるときの了を太 とする。このときの台Aと物体Bの加地

解決済み 回答数: 1