学年

教科

質問の種類

物理 高校生

この質問に答えて!

4 (1)Ua= Cr(p-pal) Vo + Cop(V-Va) R (5) 圧力: 温度: -p (V-Va) U₁ = Capo (V - V₁) + Cv (p-po) V [考え方 R - po (V - Vo) から熱が 変化と (2) 考え方参照 考え方 (1) 気体の内部エネルギーの増加は、外 から与えられた熱量と仕事の和に等しい。 圧力po. 体積Voのときの温度をTとし,p, Vのときの温度をTとする。 また,過程Aで, P.Voのときの温度をT,過程で、po. Vのときの温度をT』 とすれば、次の4つの 状態方程式が成り立つ。 PoVo=RTo PV=RT pV = RT poV = RTs)..... 過程Aでの内部エネルギー増加U』は、 Us=Cr(Ta-To) + C, (T-TA) -p(V - Vo) PV の関係が y= である。 はじめの の圧力〔 1x ゆえに、 ① P = ここで, logio ~ ② ②式に①式から得られる To TA, T を代入 すると, Cr(p-po) Vo +Cpp(V-Vo) U₁ = R さらに, -0.0 -p (V - Vo) 過程Bでの内部エネルギーの増加 UB は, UB = C, (Ts-To-po (V-Vo) + Cv (T - TB) なので、 log10 対数法則 [10] ③れば せ ③式に①式から得られる To T, T を代入の?p= すると, UB = Cppo (V-Vo) + Cr(p-po)V R -po(V-Vo) (2)過程A, B のどちらでも,最初と最後の状 態は同じなので, UA = UB となる。 よって、 ② ③式を代入すると, Cp(p-po) (V-Vo)-Cr(p-po)(V-Vo) となり, R =(p-po) (V-Vo) Cp-Cv=R 240 定期テスト予想問題の解答 すなわち 次に ヤルルの 1 > 273 ゆえに、 (補足) を求める y=1 と表す。 対数関数 k loga

未解決 回答数: 0
物理 高校生

16番 右向きの運動なのに静止摩擦力が右向きに働くのはどうしてですか?Bを中心に考えたらBは左向きの運動をしてるから摩擦は右向きに働くってことですか?

軽いばねとは、ばね自身 SA できるばねのこ とである。 5. _とBの接 接の場合 ... るので ① もりの あいの式 00000000000000000~ かけ できる。 傾きの 度 一般に、 直列接続の場合 +++ を考える。 (2) (3) 重力を斜面方向の成 は常に力がつりあう。 NV-mgcos 6=0 ②より =-g (sin6+pcos 0)[m/s] 2 N 方向下向きを正 F = N 向きとすると, mg in 方程式は mg cose 15.. (1) (s) Bの質量をm[kg], A. Bの加速度の大 きさをα [m/s] とする。 N Bの加速度は重力 mg と張力 Tの合力に よって生じているので、運動方程式は may=mg-Ti よって Ti=m(gla) =2x(10-5)=10(N) WA T Mo A No.L <模擬試験、本試験でよくありがちな設定です> 16. 床の上に物体 A, B が乗っている。 AとBの質量をそれぞれ M, m [kg], 重力加速度の大きさを g 〔m/s2] とす <前問 m 17. 右の B M A 小物体 上に乗 の間の (b) Aの加速度は張力 T によって生じているので Ma、T、よりM-12 (kg) (2) (3) (1) と同様に、Bの運動方程式は (1)の場合、 A を水平方向左向 Na 引いて静止させたときに、 引く力の大きさを T, A. B 間の糸の張力の大きさを To る。 Aと床との間の摩擦は無視できる。 AとBとの間の静止摩擦係数をμ, 動摩擦係数をμ' とする。 AをカF [N] で水平に引く。 の間の mas-mg-T 25t Ti=m\g-as) -2x(10-4)-12(N) とすると, A, Bそれぞれの 力のつりあいより A: T-To=0 T B: T-mg-0 (b) Aの加速度は、張力T と動摩擦力F の 合力によって生じているので (1) F が小さいときは、静止摩擦のため AとBは一体になって運動する。 このときのAの加速度 α, B にはたらく摩擦力を求めよ。 与える。 (1) 小 Mg よって T=mg -2x10=20(N) Max-Tr-F よって FT-Ma=12-2×4=4(N) tmg つまり、引く力の大きさで" はBの重さに等しい。 (c) 水平面がAに及ぼしている垂直抗力の大きさをN [N] とする。 鉛直 方向の力のつりあいより N-Mg = 0 N=Mg=2×10=20 (N) F=Nの式より メード 0.2 (2)Fがある大きさ Fo を越えると, BはAの上ですべるようになるFを求 めよ。 (2) 板 - (3) 小 N (3)引FFより大きいとき, BはAの上ですべりだす。 このときの AおよびBの加速度 αA, B を求めよ。 てす 最 F=ma キニナ すべり出す直前のみ つかこるのが at= F m =Mag Fo=UN 床からの垂直抗力 ∫の 反作用 F-f A. B にはたらく力は図のようになる。 このときBがAの上ですべって いても一体となって運動していても、基本的に力は同じようにはたらい ている(ただしの大きさや静止摩擦力、動摩擦力のちがいはある)。 (1) A. Bは一体として運動 しているので, AとBの加 速度は等しく, ブは止 摩擦力である。 図よ り, A. B それぞれの運動 方程式は A 最大摩擦力ではない NO 反作用 Mg ので、f=μNとしてはいけ ない。 A: Ma=F-fa... ① B:ma=f&B4 ①+②より手を消去すると (M+m)a=F amm (m/s²) この結果を②式に代入すると M+m mF [N] f=mx+m+m (2)F=Fのとき、BはAに対してすべるかどうかの境い目にあるので、 JN (Nは物体Bにはたらく垂直抗力)の関係が成り立つ。 (1)の答え にこのことを代入すると ノmFe=uN=μmg M+m Fo-pl (M+m)g[N] (3)FF のとき, BはAの上をすべる。このときAB間にはたらく摩擦 カノは動摩擦力で B 物体AとBにはたら 力は互いに作用と反作 用の関係なので、 お互いが じ大きさである。このことは BがAの上で一体となってい でもすべっていても成り立つ 関係である。 C 物体Bの鉛直方向の つりあいより N-m=0 よって N=mg juN=pmg とBは別々の加速度 Ch, 4sで運動するので①と② を用いた。 # M =F.μlog Mg M

未解決 回答数: 1
物理 高校生

0.29g減少するのにそのうち6×10-3gしかα粒子が出ない計算になっているのですが、残りのgは何に変わってしまうのですか?

Cu 者 進入 の する 検 ここがポイント 342 α 崩壊では He の原子核 (a 粒子) を放出する。 崩壊によってポロニウム原子核の数は減少し,残っ 「」に従う。ポロニウムが1個崩壊するたびにœ粒子を1個放出 た原子核の数は崩壊の式「N No (1) ² するので,放出したæ粒子の数は崩壊したポロニウムの数と等しい。原子核の質量は近似的に質量数 に比例する。 崩壊の式の の値が整数ではないときは,両辺の対数をとるとよい。 T 解答 (1)α 崩壊は,原子核が He 原子核を放出するので, 原子番号Zは2,質 量数Aは -4 だけ変化する。 よって 質量数 A=210-4=206 原子番号 Z=84-282" (2) 崩壊の式「N=(1/2) 17」において、原子核の数は質量に比例する。 初めの質量 Mo (= 1.0g), t日後の質量を M〔g〕 とすると 6=(1/2) ² = M₁ ( 12 ) + ² N M No Mo ① t = 69 日 のとき M = 1.0× M=Mol 69 138 1x (12/1)-(2/2) - // 4 m 210 0.29 276 138 √2 2 2 t=276日のとき M = 1.0× 0x (-1/2) =(1/2)=14=0.25g .≒ 0.71g 69日間に崩壊した 288Po 原子核の質量は 1.0-0.71=0.29g 28 Po 原子核と α 粒子 (He 原子核) の質量比は原子核の質量数の比 210:4としてよく崩壊した 288Po 原子核数は放出したα粒子数と等 しいので, 求める質量をm〔g〕 とすると よってm=0.29× -≒6×10-3g 4 210 原子番号 82は鉛Pbなの で,このα崩壊は 2PO206Pb+¹He という反応式で表される。 2 厳密には陽子と中性子の 質量に微妙な差があるが, 本 問ではこの差を無視している ので,質量比=核子数の比= 質量数の比としてよい。

回答募集中 回答数: 0
物理 高校生

こういう記述系のことをちゃんと書くことが苦手なのですが 具体的に押さえておくべきポイントとかありますか?

593. 水素原子の 解答 (1) 解説を参照 (2) 6.6×10-7m 指針 電子がより低いエネルギー準位に遷移するとき、準位間のエネ ルギー差に相当するエネルギーをもつ光子が放出される。 このとき,準 位間のエネルギー差が大きいほど, 放出される光子の波長は短い。波長 の長短とエネルギーの大小を関連させて考える。 (2) では, 与えられた式, 404 12/12 (1111) を用いる。 =R 12 222 n n 解説 (1) エネルギー 準位の高いところから低 いところに電子が遷移す るとき, 準位間のエネル ギー差に相当するエネル ギーをもつ光子が放出さ れる。 F は, 最も波長が 短い(エネルギーが大き い) 系列に属しており, この系列は,準位間のエ ネルギー差が最も大きい 系列である。したがって,電子が遷移した後のエネルギー準位は最も 低く,その量子数はn'=1である (図)。 また,F は,その系列の中では最も波長が長く、エネルギーが小さい。 これから,遷移する前のエネルギー準位の量子数は, n' = 1のエネル ギー準位との差が最も小さいn=2である。 量子数2のエネルギー準 位から量子数1のエネルギー準位への遷移による電磁波である。 (2) D, E は, 波長が2番目に短い系列に属しており,この系列は, 準 位間のエネルギー差が2番目に大きい系列である。 したがって, 電子 が遷移した後のエネルギー準位の量子数は, n'=2である(図)。 D は, その系列の中で最も波長が長く, エネルギーが小さいので, 量子数 n=3のエネルギー準位から量子数n'=2のエネルギー準位への遷移 によるものである。 Eは, Dの次に波長が長いので,n=4からn'=2 へのエネルギー準位間の遷移によるものである。 波長 エネルギー D E B 各系列で,準位間の エネルギー差が小さ い一部の遷移を示す。 FC 量子数 ∞ 与えられた式, 1/1=R ( 17/11/12 ) を用いると,Eの輝線の光の波長 n²

回答募集中 回答数: 0
物理 高校生

《類題3》自分で解いてみたのですが、全然答えにたどり着けなかったのでどなたか解説お願いします😭😭🙏🙇‍♀️答えの途中式がなくて困ってます>_<

0 15 例題 3 理想気体の内部エネルギー それぞれ0.62m², 0.21m² の容積をもつ容 器 A,Bをコックのついた細管でつなぎ, Aには温度が3.0×102K, 物質量が 15mol, Bには温度が4.0×102K, 物質量が10mol の単原子分子理想気体を入れる。 コックを 開いて十分な時間がたったときの温度 T [K] と圧力か [Pa] を求めよ。ただ し,容器と周囲との熱のやりとりはなく,気体の内部エネルギーの合計は 一定に保たれるとする。また,細管の体積は無視する。 気体定数を | 8.3J/ (mol・K) とする。 32 指針 気体の混合で、外部と熱のやりとりがなければ全体の内部エネルギーは保存される。 単原子分子理想気体とあることから, (28) 式を用いてよい。 解 内部エネルギー「U = 2 nRT」 ( (28) 式) の合計が一定であるから x 15 x 8.3 x (3.0 × 102) + 303 × 10 x 8.3 × ( 4.0×10²) 2 よってか A 0.62m² 3.0×10²K 15mol = つなぎのに?? 2 15 x (3.0×102) + 10 × (4.0 ×102) 15 + 10 よってT= 混合後の気体の状態方程式 [pV=nRT」 (p.222 (13)式) は px ( 0.62 + 0.21) = (15 +10) x 8.3 x (3.4 × 102) ( 15 + 10) x 8.3 × ( 3.4 × 102 ) 0.62 + 0.21 = 3.4×102K × (15 + 10) × 8.3 × T = = 8.5 × 104 Pa B 10.21m² |4.0×10²K 10mol A 0.24m3 3.2×10²K 20mol 類題 3 それぞれ 0.24m², 0.40m²の容積をもつ容 器 A, B をコックのついた細管でつなぎ, Aには温度が 3.2×10°K, 物質量が20mol の単原子分子理想気体を入れ, Bは真空に する。 コックを開いて十分な時間がたった ときの温度 T[K] と圧力 [Pa] を求めよ。 ただし, 容器と周囲との熱のや りとりはなく,気体の内部エネルギーの合計は一定に保たれるとする。 ま た,細管の体積は無視する。 気体定数を 8.3J/(mol・K) とする。 ヒント 混合前の容器B には気体が入っていないので,気体の内部エネルギーはない。 T:3.2X1ok/P=8.3×10831 熱と気体 B (真空) 0.40m² a

回答募集中 回答数: 0
1/5