学年

教科

質問の種類

物理 高校生

物理 熱 下の画像の、データ処理と書いてある下の問題を教えてください。 お願い致します🤲

73 B 実験水の温度変化を利用して、 金属の比熱を調べよう 日 【目的】 加熱したアルミニウムを水の中に入れ、水温の変化を測定する。このとき、熱が外部に 逃げなければ、熱量の保存が成り立つと考えられ、これを利用して比熱が求められる。文 献によると、アルミニウムの比熱は0.902 (J/g・K) であるが、測定値と比較し、異 なる場合はその原因を考察する。 【準備】 水熱量計、温度計、糸、アルミニウム(たぶん100g), メスシリンダー、計量カップ 【手順】 ① 水熱量計の銅製容器とかきまぜ棒を取りはずして、それらの質量 m〔g〕(=140g) を測定する。(今回は省略) ② アルミニウムの質量m2 〔g] を測定する。 ③水熱量計の銅製容器に水 200mLを入れる。 このとき、水の密度 は 1.0g/cmとして、水の質量 m3 〔g] とする。 →200g ④ 水熱量計を再び組み立てる (今回は省略)。しばらく放置した あとに、水の温度 [℃] を測定する。 ⑤ 図ではビーカーであるが、 今回は沸騰した水を電気ポッドから 計量カップにいれ、 その中に糸をつけたアルミニウムを完全に入 れてしばらく置く。 このときのお湯の温度 [℃] を測定して アルミニウムの温度とする。 熱平衡 ⑥ 糸をもってアルミニウムを取り出し、素早く水熱量計に移す。 ※注意:アルミニウムについた湯をよく払って移す。 ⑦ すぐにふたをして、かきまぜ棒を上下にゆっくりと動かす。 温度 ⑧ 水温の上昇が止まったら (30~40秒後) 水温 4 [℃] を測定する。 【データ処理】 アルミニウム を水 移ず 1 かきまぜ (鋼製) ① アルミニウムの比熱をc 〔J/gK] として、アルミニウムが失った熱量Q [J] を求める。 ② 水の比熱 4.2 J/ (g・K) を用いて, 水が得た熱量 Q2 〔J] を求める。 ③ 銅の比熱 0.38J/ (g・K) を用いて, 銅製容器とかきまぜ棒が得た熱量 23 [J] を求める。 ④ 温度計が得た熱量は小さいものとして無視し, Q=Q2+ Q3 の関係から,アルミニウムの比 熱c [J/g・K] を求める m1140g に m2=100g m3:200g +1=21.30 +2=772+3=26.6°

回答募集中 回答数: 0
物理 高校生

(2)でなぜBが高電位になるのか分かりません 回転すると右向きの磁束が増えるからそれを妨げるために、AからBの向きに電流が流れるのでAが高電位になるんじゃないんですか?

f B セント 135 〈交流の発生> 113 (2) 辺abは磁場を横切る体なので、 誘導起電力の式 「V=Blo」 を用いる。 (3)(pq間に発生する誘導起電力) (コイルの各辺に生じる誘導起電力の和) 標準問題 (5) コイルに生じる誘導起電力の大きさは、ファラデーの電磁誘導の法則 「V=-N4 at」を用いる。 A 135.〈交流の発生> 図1のような辺の長さが1の正方形 abedからなる1回 巻きのコイルを,磁束密度Bの均一な磁場の中に置き、 磁 力線に垂直な軸のまわりに,一定の角速度で図の矢印の 向きに回す。 コイルの両端はそれぞれリング状の電極p と qを通して,常に抵抗Rとつながっている。 このとき、コ イルは回転するが, リング状の電極と抵抗は静止したまま である。図2(a) と (b)は回転軸にそって見たコイルと磁力線 (a) = 0 である。図2のように,コイルの面と磁場の角度は,時 N S P 9 R- 図 1 B (b) t=to N S N S 刻 t=0 のとき 0=0, 時刻t=to のとき 0<B<1であ R cd ab 8 図2 った。次の問いに答えよ。 [A]各辺に生じる誘導起電力を考えることで, pq 間に発生する誘導起電力を考える。答 えには1,B,w, tのうちから必要なものを用いよ。 〇 (1) 辺 ab 部分の速さを表せ。 (2)時刻における辺 ab 部分に生じる誘導起電力の大きさを表せ。 (3) 時刻 t における各辺に生じる誘導起電力を足し合わせることで, pq間に発生する誘導 起電力 Vの大きさを表せ。 〔B〕 ファラデーの電磁誘導の法則を考えることで, pq 間に発生する誘導起電力を考える。 答えには l, B, w, tのうちから必要なものを用いよ。 (4) 時刻 t におけるコイルを貫く磁束を表せ。 (5) 時刻 t におけるコイルに生じる誘導起電力 Vの大きさを表せ。 ただし、必要であれば, 次式を利用してよい。 Asin wt =wcoswt, 4t ⊿coswt =-wsin wt At [C] 抵抗に流れる電流I と消費電力Pを考える。 p から抵抗を通って q に流れる電流の向 きを正とする。 記 (6) 時刻 t = to における辺 ab に流れる電流Iの向きを図1に矢印で示せ。 また電流Iに よってコイルが磁場からどのような向きの力を受けるか説明せよ。 (7) 消費電力の最大値 Pmax を1, B, w, R のうちから必要なものを用いて表せ。 また, P と wtの関係を 0≦wt2 の範囲でグラフに図示せよ。 [23 徳島大〕 (8)電流が磁場から受ける力 「FIBL」の向きは、フレミングの左手の法則より判断する。 2 (7)消費電力Pは, 「PIV=PR=」から適当な形の式を用いる。 〔A〕 (1) 辺abの速さひab は, コイルの回転半径が であるので,速さと角 2 速度の関係式 「v=rw」 より Vab 51=- (2) 時刻において,辺ab は水平から角度 wt 回転しているので 辺ab の磁 場に垂直な方向の速度成分 Vabi は図a より 上向きを正として Vabi = Dab COSWt=coswt と表される。 辺ab に生じる誘導起電力の大きさ | Vab|は, 「V=Bl」 より |Vab|=|Blvabi|=| 11=B1.12 cost=/12/Blacoswt| このとき,swt< ならば誘導起電力の向きはレンツの法則A より bが高電位となる向き ※Bである。 (3) 磁場を垂直に横切る辺は辺abと辺cdであり, これらの辺にのみ誘導起 電力が生じる。 辺cdについても 時刻に生じる誘導起電力の大きさを |Veal として求めると, 辺ab についての(1),(2)と同様になり <<-*A によっ くる磁 れた磁 B 公式カ 状 |V|=|Blucas|=|Bl-cos wt|=Bl³w|cos wt| 誘導書 Out < ならば誘導起電力の向きはレンツの法則よりdが高電位とな る向きである。 求め V=|Van|+|Vcal=12Blwlcoset|+1/2 よって Vab と Veaの誘導起電力の向きは同じ方向であるので, pq間に発 生する誘導起電力の大きさ Vは Blwcoswt|=Bl°ω\coswt| 〔B〕 (4) コイルの面積をSとする。 時刻において, コイルは水平から角 ・度回転しているので、 磁場に対して直角方向に射影したコイルの面積 Sは図bより S=S|sint|=|sinet| このとき、コイルを貫く磁束は、磁束の式 「Ø=BS」より, 0<wt<πで のコイルの向きに対してコイルを貫く磁束を正とすると =BS = Blsinat (5)(4)においてコイルに生じる誘導起電力 Vの大きさ|Vは,ファラデーの 電磁誘導の法則 「V=-N2」より 4t |V|=|-1×40 |=|_ A(BIªsinwt)|=|- BF²-- =l-Bl2wcoswtl=Blw\coswt|C Asin wt At ---

回答募集中 回答数: 0
物理 高校生

教えてください🙏

18 リピートノート物理② リピートノート物理② 19 10 確認問題(1) 17問 月 ②この定在波の波長はいくらか。 26 波の伝わる速さ 水面を波が伝わっている。この波の隣りあう山の間隔は2.0mである。水面に小さな 浮きを浮かべると 10s間で5回上下に振動した。 ただし、浮きが最も高い位置に来たときから再び同じ 位置に来るときまでを1回の振動とする。 次の問いに有効数字2桁で答えよ。 (センター試験改) □ ③ 弦を伝わる波の速さはいくらか。 □ (1) この波の波長はいくらか。 □(2) この波の周期はいくらか。 ■ (3) この波が伝わる速さはいくらか。 27 重ね合わせの原理 左下の図は、お互いに逆向きに進む2つのパルス波のある時刻における波形を表 している。この後、2つのパルス波がそれぞれ矢印の向きに3目盛り進んだときの合成波の波形を右下の方 に作図せよ。 (センター試験改) 位 0 位 20 (2) おもりや弦は(1)と同じままで,振動数を小さくして基本振動をさせた。 ①このときに生じる定在波の波長はいくらか。 □②このときの定在波の振動数はいくらか。 ただし、おもりや弦を変えない場合は、 波の伝わる速さも変 わらない。 30 気柱の共鳴 管楽器は、管の口に息を吹きつけたときに生じる気柱の共鳴を利用して音を出す。 管内の 気柱の共鳴について,次の問いに答えよ (数値は有効数字3桁)。 ただし, 音の速さを341m/sとし、開口端 補正は無視できるものとする。 (1) 図1のように細長い管を用意し、 管の一端の近くに振動数∫[Hz] の音源を置く。 音源の振動数を0Hzから徐々に大きくしていくと, f=440 [Hz] で初めて共鳴が 生じた。 ①管の中に生じている定在波の波形を, 右の図に作図せよ。 ②このときの音の波長はいくらか。 笛の 管の長さ 10 (センター試験改) 図1 音源 細長い管 0 位置 0 位置 うなり バイオリンのある弦をはじくと, 振動数440Hz のおんさの音よりわずかに低い音がした。 バ リンの弦をはじくと同時におんさを鳴らしたところ, 0.5sの周期でうなりが聞こえた。 このとき,次の (センター試験改) v = fd 341= 440 A λ = s間に生じるうなりの回数はいくらか。 □③ 管の長さはいくらか。 のときに弦が発した音の振動数はいくらか。 (2)次に, 図2のように、同じ管の一端を手で閉じて同様の実験を行う。 音源の振 動数を0Hzから徐々に大きくしていくと. ある振動数のときに初めて共鳴が生 じた。 図2 音源 □ ① 管の中に生じている定在波の波形を. 右の図に作図せよ。 振動 図のように軽い弦を, 端Aで振動片につけ, 端Bでは しておもりをつるした。 次の問いに答えよ。 ■片を60Hzの振動数で振動させると, AB間 (長さ1.5m) に3 をもつ定在波が生じた。 のときの固有振動を, 何振動というか。 □ ② このときの音の波長はいくらか。 ③このときの音源の振動数を答えよ。

回答募集中 回答数: 0
物理 高校生

疑問に思っているので、優しい方教えて欲しいです🙇‍♀️ マーカーの部分の直進性が高い 2GHz数字が小さいのになぜ直進性が高いのですか??

録するため, 用途に応じて適切な と効果的である。ショーケース内の物を撮影すると きは,ガラス面での反射による写り込みを防ぐため (偏光 減光フィルターを使用するとよい。 5 私たちが日常で使う携帯電話は、複数の波長の電波を ★ 利用した通信サービスである。2010年以降に普及して いる第4世代移動通信システム (4G規格)では,波長 約15cmの2GHz帯と, 波長約35cmの800MHz帯 の電波をおもに利用しているが,このうち800 MHz 帯は「プラチナバンド」 と呼ばれ, 建物内やビルの谷間, 山間部などでもつながりやすい特徴をもつ。 なぜ波長 の短い2GHz帯より, 波長の長い 800MHz帯の電波 がつながりやすいのか。 その理由を説明しなさい。 とくちょう ⑤ 3編1章 光の性質とその利用 p.137 右図 2 (1) B (2)例人は,光の 波長と色を単純 に対応させて見 ているわけではないから。 3 (1) 白色 (2) (a), (d), (g), (h) 4 (1) 全反射 (2) 偏光 5 波長が長いと回折性が高いので,直進性が強い 2GHz帯と比べて, 800MHz帯の電波の方が, 建 物の後方などに回り込んで電波が届くため。 6 (1) 1(b) 2 (d) 3 (a) 4 (e) 5 (c) (2) (c) < (b) < (a) < (e) < (d) あ あと

回答募集中 回答数: 0
物理 高校生

なかなか解けないのでどなたかこの問題を解説して頂きたいです

L 14101 40 多 半角/全角 ! # あ $ う % え & お 漢字 1 ぬ 2131 3 あ 4 う 5 K Q W tab → 以下の問いでは、重力加速度の大きさをとして答えよ。 【問1】質量m の小物体が液体中を落下するときは、 重力 mg の他に、 液体 との間に抵抗力が働くと考えられる (浮力も考慮する必要があるが、 体積 が小さく浮力は無視できるものと仮定する)。 実験と測定を行い、ある質量1kgの物体の、時刻 t [s] における位置 y(t) [m] (液面からの深さ、y軸を液面を原点として、下向きを正にと る)は となることが分かった。 y(t)=2g(t+2e-lt-2) (i) 時刻 t における速度vy(t)、加速度 ay (t) をそれぞれ求めよ。 (6) y (ii) 横軸をt縦軸をyとしてvy (t) のグラフの概形を 0 ≤t ≤ 20 の範囲で描け。 (iii) lim vy(t) を求めよ。 また、この結果を物理的に解釈せよ。 t→∞ 抵抗力 重力 mg (iv) 運動方程式を利用して物体に作用する抵抗力の大きさ fを求め、 fvに比例することを示せ。 【問2】 水平面上を円運動する、 質量が3kg のおもちゃの車を考える。 円運動の中心を原点にとり、円運動して いる平面上に適当な2つの軸(z軸と軸)をとるとき、時刻における車の位置 = (s,y) が次式のように なっていたとする: (x(t),y(t)) =2(cos(+12), sin(+2)) (7) (r,y の単位は [m]、tの単位は[s] とする。) (i) 0 ≤t < 2 の範囲で、車の軌跡を描け。 (ii) 角速度 ω を求めよ。 (iii) 時刻 t における車の速度 J = (Vx, Vy) と、その大きさv=vvz + v7z [m/s] を求めよ。 (iv) 時刻 t における車の加速度 が d = (ax, ay) (8) (9) (a,(t), a,(t)) = (-sin (²), cos (+1)) - (cos (+12), sin (+²)) 212 (10 になることを、速度の微分を計算して確かめよ。 (v)加速度の大きさα = || を求めよ。 ※ペクトルの大きさと内積の関係、 (cos (12), sin (12)) = で、互いに直交する = 1 にあらわれるベクトル (-sin (2), cos (2)) が、それぞれ大きさ1 = =121=1.2=ことを用いると、計算が簡単にできる。

回答募集中 回答数: 0
1/28