学年

教科

質問の種類

物理 高校生

名問の森の質問です。 (2)の解説部分の赤線がなぜなのかいまいちよく分かりません。教えてください🙇‍♀️

BxX 31 直流回路 電圧 100Vで使用すると, 80 W を消費する電球 L と, 40W を消費 する電球 M がある。 L, Mにかかる電圧 V〔V〕 と,電球を流れる電流 I〔A〕との関係を示す特性曲線は図1のようである。有効数字2桁で 答えよ。 19/9 名 00(1) Lに電圧 80Vをかけて使用するとき,Lの抵抗値はいくらか。ま た,消費電力はいくらか。 × (2) Lを電圧 100Vで使用しているとき,Lのフィラメントの温度は いくらか。ただし,抵抗の温度係数を2.5×10-3/℃ 室温を0℃と する。また,図1の点線はLの特性曲線の原点における接線を示す ものとする。 だから (3)図2において,Eは内部抵抗の無視できる起電力 120V の電池 Rは100Ωの抵抗である。 L を端子 XY間に連結して使用すると きLの電圧と消費電力はいくらか。ば (4)Lと100[Ω] の抵抗3本を並列にして(図3), 図2のXY間に連 結して使用するとき,Lにかかる電圧はいくらか。 × (5) LとMを並列にして、 図2のXY間に連結して使用するとき, L の消費電力はいくらか。 また, 回路全体での消費電力はいくらか。 Level (1) ★ (2) (3) (4) (5) Point & Hint Poji[C]での抵抗値は0袋)の (2)(4は抵抗の温度係数)が漁費電力 31 105 民として、R=R(1+al)と表され が大きいほど高温になる。つまり、グラ フの右上に向かって温度が高くなっている。 すると室温はどのあたりか。 706 図1を生かしたいのでにかかる圧を流れる電流を」として、キル ヒホッフの法則で関係式をつくる。一種の連立方程式の問題だが, グラフ上で解 くことになる。 (5)LとMを1つの電球とみて特性曲線をつくってみる。 LECTURE (1) 図1より V = 80[V] のとき I=0.7 〔A〕 の電流が流れるから, オーム の法則 V=RI より抵抗値 Rは R= == 80 0.7 ≒1.1×102 [Ω] 消費電力は VI = 80×0.7=56 〔W〕 RI2を用いてもよいが, VI ならダイレクトに計算できる。 10 M+J (2)V=100 〔V〕 のとき, I = 0.8 〔A〕 だから VOST V 100 R= == =125 [Ω] I 0.8 室温0℃はジュール熱の発生が無視できる原点近くの (VIが0に近い) 状態である。 [℃] での抵抗値 R のまま一定を保てば, 特性曲線は点線の 20 0.4 0.2 I[A] 1.2 225 1.0 0.8 0.6 Y 120V 100Ω RATE 図2 L IM 091 0 0 20 40 60 80 100 120 100Ω V(V) 図1 図3 ような直線となるはずだから Ro=1.0=20[Ω] よって, 求める温度を t [℃] とすると 点線のどこを 3. |使ってもよい 125 = 20 × ( 1 + 2.5 × 10-3t) .. t = 2.1×103 [℃] (3)Lの電圧、電流をV, I とすると, キルヒホッフの法則より 120 100I+V ・・・・・・ ① この関係を満たす V. Iは次図の直線(実線) で表される。 Lの特性曲線との交点が求める答 えだから V = 60[V] I = 0.6 (A) 消費電力はVI=60×0.6=36〔W〕 式①をグラフ化するとき 1次式だから直線 100Ω 120V 図 a

解決済み 回答数: 1
物理 高校生

(2)において、ストッパーがはずれると外力がなくなるため運動量保存かな?と思って式を立てていったのですが、よくかんがえると最初ストッパーから外力を受けているから前後での運動量って保存しないと思ったのですが違うのですか?..でも解答では運動量保存使ってるから保存してるんですよ... 続きを読む

曲面 AB と突起Wからなる質量 A 小球 m Mの台が水平な床未上にあり,台の左 (リ 側は床に固定されたストッパー Sに 接している。Bの近くは水平面とな っていて,そこからんだけ高い位置 にあるA点で質量 m(m<M)の小 W ん 台 M S B 床 球を静かに放した。小球は曲面を滑り降りて突起W に弾性衝突し,台 はSから離れ,小球は曲面を逆方向に上り始めた。台や床の摩擦はな く,重力加速度をgとする。 (1) 突起 Wと衝突する直前の小球の速ざはいくらか。 小球が Wと衝突した直後の,小球と台の速さはそれぞれいくらか。 (3 小球が曲面を上り,最高点に達したときの台の連さはいくらか。 また,最高点の高さ(Bからの高さ)はいくらか。 次に, ストッパーSをはずして, 台が静止した状態で, 小球を A点 で静かに放す。 (4) Wに衝突する直前の,小球と台の速さはそれぞれいくらか。 (5) Wとの衝突後, 小球が達する最高点の高さはいくらか。 (東京電機大+日本大)

解決済み 回答数: 1
物理 高校生

物理 力学です。(4)のPの運動方程式について、なぜ慣性力を考慮しなくていいのかがわからないです。

10運動方程式 水平面上に置かれた質量 Mの 箱Qの中に質量Mの小物体Pを 入れ、静止状態から箱に外力F, を水平右向きに加えて運動させ る。PとQの間の静止摩擦係数を μo)動摩擦係数をμとし、Qと水平 面の間の動摩擦係数もμとする。重力加速度をgとする。 まず,F=Foのとき,P, Qは一体となって運動した。 (1) 加速度を求めよ。 (2) PがQから受けている摩擦力カの大きさげを求めよ。 (3) P, Qが一体となって運動するためには, Foはいくら以下でなけ ればならないか。その限界値 F,を求めよ。 次に, F= F(> F)として, 静止状態から動かすと, Pは箱Qに 対して滑って動いた。 (4) Pの加速度aとQの加速度Aをそれぞれ求めよ。 (5) はじめPはQの左端から1の距離の所にあったとする。PがQの 左端に達するまでの時間tを求めよ。 最後に,外力は加えず,静止状態から箱Qだけに右向きの初速 voを P F 与える。 (6) Pが1離れた箱の左端に達するためには, voはいくら以上である (鹿児島大+名古屋市立大) べきか。 Level(1)~(4) ★ (5), (6) ★ Point-& Hint (1) P, Qを一体として扱う。 (2) Pだけの運動方程式を考える。 (3) PとQの間に滑りがないので, fは静止摩擦力である。 (4)作用·反作用の法則が大切。 (5), (6)箱Qに対するPの運動(相対運動)を考えるとよい。

解決済み 回答数: 1
物理 高校生

なぜこの問題にてQの位置エネルギーを考えていないんでしょうか

11 エネルギー保存則 35 HCURE (1) Qが最高点に達したとき,Qも Pも一 瞬静止する。この間に失われた(減少し た)のは,P, Qの運動エネルギーとPが しだけ下がったことによる位置エネル ギーである。一方,現れた(増した)の 本エ SE 静止 A Vo Vo 30° Q h」 he は,Qが Isin 30°高く上がった分の位 置エネルギーだから 6a幅とネしそーぼ?? 基準位置 うmu+3m8+ 3m-vo+ mgl = 3m·g·l sin 30° 1 4° 2 =D1 Mへ 1 運動エネルギーがmus+3muだけ失われ, 位置エネルギーが実 1 2 質的に 3mgl sin 30°-mgl だけ現れたとみてもよい。式表現は考え方で変 わってくる。 別解 初めの P, Qの,基準位置からの高さを ん, ha とする。全体の力学的エネル ギーを調べ,「はじめ=あと」とおいてもよい。 ★)5) 1 2 1 ;mue+ mghi +:3mv?+3mgh2 nto! 2 静止 =0+mg(hi-1) +0+3mg(h2+1 sin 30°) 両辺から mgh., 3mgh2 は消え, 上の式 と一致してくる。 Vo の(9) L と *……ャーー L 静止 30° ( J (2) 力学的エネルギー保存則より, Qが Aに戻ったときの速さは10となる(P も)。位置エネルギーが元の値に戻る ので、運動エネルギーも元の値になる からである。 Vo A点に戻ったときの Gく速さはvo であるこ とを見抜きたい。 取下点Cで止まるから,失ったのは P, Qの運動エネルギーとQの位置 エネルギー。一方, 現れたのはPの位置エネルギーと摩擦熱。 no X0 :3mu+3mgL sin 30° 2 2 -mu? + 2102 A O 上 OA

解決済み 回答数: 1