学年

教科

質問の種類

物理 高校生

①、②まではわかるんですけど答えがなぜそうなるのかわからないです。

60 60 Chapter 2 力のつり合い 問2-3 のおもりを ている。このときの2本の糸の張力の大きさをそれぞれ求めよ。 ただし、 速度の大きさを とする。 解きかた この場合は、 ませんね。 問2-1 のように単純に力のつり合いの式を立てることが そこで、力を鉛直方向と水平方向に分解してつり合いの式を立てるわけです 問2-3 糸 1 45゜ 45° 2-4 力の解 61 糸2 22 まずおもりにはたらく力を図示するという手順は同じです。 ページ真ん中の図のようになります。 そして、張力を鉛直方向と水平方向に分解して、そのそれぞれについて 力のつり合いの式を立てると |求める張力の大きさをそれぞれ T1 T2 とすると, おもりにはたらく力はも 物体にはたらく力を分解すると・・・ Tsin 45° T2sin 45° T2 T₁ ここを理解したら どんぐりを 食べようっと 鉛直方向: T sin45°+T2 sin45°=mg ...... ① 回 水平方向: T cos45°=T2 cos45° ......② = √2 sin45°cos45 ですから,①,②式を解いて mg T₁ = T₂ =√2 このように、力のつり合いを考えるうえで,力を分解する方法はよく使われます。 この例のように,鉛直と水平に分解するのがいちばんオーソドックスですが 他の分解のしかたでも問題は解けます。 どのように分解すれば、いちばんきれいに解けるかを意識するようにしましょう。 お 45° Ticos 45° よって ・ 45° T2 cos 45° mg 力の分解成分 F sin 0 角をなす力Fの 水平 鉛直成分は Fcos 0, Fsin 0に なるのじゃ B

解決済み 回答数: 1
物理 高校生

なにがどうなってこの式になったのか分かりません。

I わる、 以下の空欄にあてはまるものを各解答群から選び, マーク解答用 紙の該当欄にマークせよ。 図1のように, z軸の正の向きに一様であるが時間とともに変化する磁 場をかける。この中に,長さLで絶縁体の細い糸の一方の端を磁場中の ある点0に固定し,もう一方の端に質量 M, 正の電荷 +α を持つ粒子を つなぐ。 時刻 t <0 のある時刻に. 糸が磁場と垂直に張った状態で,粒子 を磁場と糸に垂直な方向に初速で打ち出した。 粒子は磁場と垂直な平 面上を, 2軸の正の方から見て時計まわりに半径Lで円運動した。 粒子 の円に沿った運動については,粒子の運動の向きを正の向きとする。 円周 率をとし,粒子にはたらく重力は無視してよい。 +9 Bo 図1 B Bo ( 1 + kt ) t 問1時刻t<0では一様磁場の磁束密度は一定値であった。 このとき, Boであった。このとき, 糸がたるまずに等速円運動することのできる粒子の速さの最小値を Vo, 角速度を wo とすると, vo は (1) と表される。たとえば, Bo=1.0T として,回転している粒子が陽子と同じ質量 M=1.7×107kg と電荷 g=1.6×10-1Cを持つ場合, 角速度 wo は、 (2) rad/s となる。 ただ て,粒子の速さは光速よりも十分に小さいものとする。 時刻 t < 0 で粒 子に初速v=3v を与え, t>0では磁束密度をB=Bo(1+kt) (kは正 ω

解決済み 回答数: 1
1/46