学年

教科

質問の種類

物理 高校生

(さ)で「v²ーv。²=2ax」は使えないんですか?

States along the AT. Cimbing ded hillides s from North Carolina bengamot (Georgia to southern h into Ontario, ich blooms berries adI cohosh, oeyedaisy,black-eyedSusan New England)。 bee balm (Georgia lo New York), touch-me-not, boneset. above other undergrowth, e by tubelar fowers of the deepest, of he carlier nowers will hv I I 図2に示すように、正の荷電粒子(質量m [kg),電気量q(C), q> 0)が, x 軸上を真っすぐ正の向きに運動してきて原点0を volm/s)の速さで通過した のち,点A, B, Cを通過した。x軸上の電位の様子は図3のように示され V とす。 る。A, B. Cのょ座標を, それぞれ xA, Xル, Xc とする。また,原点0を電位 の基準とし、図3中の1VaはAからBまでの電位を示す。 し x Cm) XcーXo 大二関 A m, 4, D, エh, エル, Ic. VEのうち, 必要なものを用いて,以下の各間に答 えよ。 図2 ?ng 二 例 OA 間/AB間およびBC間の電界の大きさを求めよ。 V(V)、 ある、(コ)粒子が OA 間で受けるカの大きさを求めよ。 離 ニ 濃 お ケ 粒子がAを通過するときの速ぎを求めよ。 AちAは Vg の JJS ケ 『個き端 H 日 粒子がAからBまで進むのに要する時間を求めよ。 (ス) 粒子がCを通過するときの速さを求めよ。 る本軍S / O 0 B C XA XB Xc 図3 T-Ed VE- Exe F. gVB eE Ma: 9.VE ズA XローXA ◇M2(750-24) mIA

回答募集中 回答数: 0
物理 高校生

大問4の(c)の問題の解き方がよくわかりません。 教えていただければ幸いです!!

則を表して W V=ー= vBL 答 4. この紙面に垂直で表から裏に向かう一様な磁場を 考え、その磁束密度をBとする。 磁場に垂直な長 方形の導線 abed を設置して、一辺 be を速さvで 右側へ動かすとする(図1参照)。これについて下 記の問いに答えなさい。 速さvで磁場内を移動している導線bc は起 電力V= vBI の電池と同等である。図2の電 池の電圧をV=vBI とすると、 図1と図2は 同等である。したがって、 電流はc→d→a→b の向きに流れる。 荷電粒子qがbからcへ移動するのは磁場 からF= qvB の力を受けるからである。した がって、図1では、導線の運動エネルギーが 磁場を介して起電力を生み出していることが 分かる。図2では電池の化学エネルギーが起 答 d a b b 電力の源である。 図1:時刻rにおいて、 可動導線は bc の位置にあった とする。破線b'c' は時刻!+ Ar における可動導線の位 置を表している。 (a) 辺 be 上の正の電荷q を帯びた自由荷電粒子 が磁場から受けるカFの大きさと向きを求 b めよ。 図 2: 解答 Fは次式で与えられる。 (c) 荷電粒子がcdab 間を移動している最中は、 電 気エネルギーは磁磁場から荷電粒子に供給され ないことを確かめなさい。つまり、この区間 では、荷電粒子の移動方向とローレンツカは 常に直交していることを示しなさい。 F= qixB すとBがなす角はx/2であるから力の大きさ F は次式で与えられる。 F= qvB 答 1a

回答募集中 回答数: 0
物理 高校生

(1)どの向きにBが働くか分かりません💦

(間 6) 回路 abed に流れる電流を求めよ。ただし, 電流はa→bの方向を正とする。 まずsとrに,図のように電流」が流れている場合を考える。以下の問いに答えよ。 ア能に平行に置かれている。「」と」の間隔はtで、それらは y軸から等距離の位置にある。ー 方,sとraはy軸から距離Lの位置にある。さらに、長さがをで抵抗が Rの2本の導体棒 ab と cd がそれぞれ速さ (r, < Pa) でr Tz の湾方に接しながら運動しているとする。た。 直線で抵抗が無視できる無限に長い4本の導体棒 T I Fs Taが、 図のようにy平面上で Cach guest's Davor. However, it is on an Ai island, there are no other person thana guest, Of course, there fe no cook, so you have to capture all edients you want to cat and * vourself. Sure you lean n tha 2 そつなぐ。A は水平な床の上 び,ばねが自然長にある時 町の摩擦はないものとし、 れ,", u= qur (a > 1) R てAが持つ運動エネ , u'. m, g で表 位置でAの速度 (一番くよく) 条件をbとx における磁楽密度Bの大きさと向きを求め (間 1) r, ra で囲まれる平面内 トただし、レ>号> x] として、 1に比べて(金)は小さく無視できるとする。 きはその位置 -0で静止し (問 2) 園路abcd に生じる誘導起電カの大きさを求めよ。 ( 3) 阿路 abcd に流れる電流を求めよ。ただし、電流はa→bの方向を正とする。 (間 4) 導体棒ab が磁場から受けるカ下の大きさと向きを求めよ。 次に,rに流れる電流の方向を逆にした。xiがLよりも十分小さいという近似を用いず、 以 下の問いに答えよ。 (間 5) 「, faで囲まれる平面内(一号くょく) における磁東密度為の大きさと向きを求の よ。

回答募集中 回答数: 0
物理 高校生

物理第一学習社電磁気章末問題 1〜3を教えてください!お願いします!

1盛場中の電流が受ける力●磁東密度2.0Tの鉛直上 向きの一様な磁場の中で,図のように,水平となす 張る。質量0.50kgの金属棒 PQを導線に垂直に渡 3ホール効果 金属などの中を流れる電流に対して、垂直に磁場をかけると、電流と磁 の両方に垂直な方向に起電力が生じる。この現象を,ホール効果という。 た,ホール効果によって生じる電圧を,ホール電圧という。 ホール効果の説明 電流I(A)が流れている金属板に,電流の向きと垂直に破事を。 B(T]の磁場をかける。このとき, 金属板の内部を運動している電荷 -e[C), 速さ。 [m/s)の自由電子は,ローレンツカ evB(N]を受け、運動の向きが曲げられて面p。 集まる(図因a))。このことから,面Pは負, 面Qは正に帯電し、金属板の内部には Qから面Pの向きに電場が生じる。この強さをE(V/m] とすると、電子は,ローレン ツカ euB(N]と,PからQの向きに電場による力 eE[N)を受ける。これらの力がつn あうまで,電子は面Pの側へ移動し続け,PQ間の電場が大きくなっていく。やが つりあいの状態になったとき、電子は,金属板の中を直進するようになる(図b) このとき, eE=evB であり,電場の強さ E[V/m]は,次式で表される。 本」 Hal votage が 30°となるように,2本の導線を49cm間隔に 特cn 一定の電流を流すと,金属棒 PQは静止した。 述の向きと大きさを求めよ。ただし,金属様 PO と導線の間には,摩擦がないものとする。 2.0T 30) 電源装置 西線電流とコイル 真空中で,十分に長い直線状の 電線に,上向きに電流1が流れており、導線と同一 平面内の,一辺の長さaの正方形コイル ABCD に ;時計まわりの向きに電流iが流れている。コイ ルの辺 AD は導線と平行で,導線からxだけはなれ ている。真空の透磁率を として,正方形コイル が受ける力の合力の向きと大きさを求めよ。 E=vB (75) ここで,金属板の厚さをh[m), 幅をdlm), 金属中の単位体積あたりの電子の数を n(個/m)とすると,式(31)から,1=env·hd となり,電子の速さ [m/s)は、 enhd と表される。したがって,ホール電圧 VIV]は, 式(8)を用いて,次のよう に求められる。 リー a- C 式(8) 『=Ed 式(31) 1=enuS Op.253 V=Ed=vBdー IB …(76) Op.224 ビントコイル ABCD が、自身におよばす力の合力は0である。 enh 「標準 半導体には,ホール効果が顕著におこる ものがあり,磁束密度を測定するための磁 気センサーなどに利用されている。 注意 キャリアが正常両の場合 帯電の仕方が負電荷の場合と逆に なり、面Pは正,面は負に帯電 3ローレンツカ●図かように,*軸に平行な磁東密度Bの一 様な磁場の中で、質量m, 電荷 q(>0)の粒子が、x軸との なす角が6となろように, 原点0から xz 面内に速さゅで 発射された。粒子を軸の正の向きから見ると、等速円運 する。 動をしている。次の各問に答えよ。 (1)円運動の半径と展期をそれぞれ求めよ。 (2) 発射されてから粒子が最初にx軸を通過するまでに、 粒子がx軸方向に進んだ距離を求めよ。 B ホール電田 金属板 V 面Q 電場から受け る力eE 面P folh 電場E ヒント粒子の運動を,磁場に垂直な面内と、磁場の方向に分けて考える。 面Q 面P 面Q 面P |基本 BO BO 4ホール効果●図のような直方体の形をした半導体に、 磁場 上向きに一様な磁場をかけて、 右向きに電流を流し ロー 電流 22 ま .40A, 12V 問23 5V, 1.0×10 ES 2d 節末問題 Rry (2) R+r。 R+r。 経習1(p.247)(1 (3) 図a 2(1) 2.0mA(2) 7.0V (3) 3.0mA B(1) 3.0mA,6.0V, 1.2×10-C (2) 1.0mA, 4.0V, 8.0×10*C (1) V+100/=5.0(2) 略(3) 20mA 第3節●電流と磁場 (p.278~299) 間44 2.5×10°N/Wb 問45 1.6A/m, 紙面に垂直に裏から表の向き 即6 時計まわりに1.6A S 立置 2d (G+2)eS 5ES 12d 虚像,正立 3d 翌24 0.10J 問25 1.2×10-J 防末問題 I AからBに向かって(2+/2)dの点 2 日(1) 7.2×10'N/C, Oからdの向き(2) 0V 2AQ 問47 15A/m 問48 東向きに6.3×10-N 問49 PからQの向き、0.38T 問50 右向き,4.0×10-4N 問51 (1)鉛直上向き、1.2×10-T (2) BからAの向き、3.6×10“N 問52 1.6×10-17N 5a 日 (1)点0… 点C…20 は下方から見 2k0g (2) 25ma なる部分は下 5 C-5.0×10- C, Cy…2.0×10-C C…3.0×10-C B A…6.0×10-4C, C…-2.0×10C 2元mcos 0 qB 電子の場合N, 正電荷の場合…M 第4節●電磁誘導と交流 (p.300~339) 間54 4.0×10-3Wb 問55 0.36A. PからQの向き 問56 00.10V, a→d→c→b→aの向き の0.10V, a→b→c→d→aの向き 問57 (1) 5.0×10-V (2)Q 練習1(p.306) 10"個 問53 紙面に避直に裏から表の向き, 日 (1)倍(2)-G PAd 2.S 第2節●電流(p.252~277) 問26 0.25A 問27 1.3×10*m/s 節末問題 QからPの向き、2.9A 日(1 Q 2S ia 2 左向き、 2エx(x+a) 45 78 ,周期2xm qB PN/C B(1) 半径 sin6 解答一覧 427 (2) P(3) Q(4) Q (5) Q(6) Q 間58 両者は等しい 問59 時計まわり 問60 30V 間61 0.25J 問62 0.60V, P 問63 0.20V 問64 141 V, 実効値…5.0A, 最大値…7.1A 問65 3.1×10°0, 3.2×10-A 76 4/m 8u Alm 問6 -sm 50t-)または一2co -cos50元 OW 問67 1.0×10°Q, 1.2A

回答募集中 回答数: 0
物理 高校生

1枚目のピンクで丸している問題(ア)を 教えてください。 2枚目が解説です。

~に]には指定された選択肢か い 1 ら最も適切なものを1つ選べ。重力加速度は一定で,その大きさをgとする。 次の問いにおいて,天井と床は,いずれも剛体であり,固定されているものとする。ばわ は,質量が無視できるものとし,ばね定数がk,自然の長さが Loであり,まっすぐ伸び縮み するものとする。ブロックは, 質量が mで, 大きさが無視できるものとし,その運動は、同 一直線上から外れないものとする。 図1のように,天井からばねをつるし, ばねにブロックを取りつけた。 ばねの自然の長さを保つようプロックを手で支え,静かに手をはなした後 ばねが最も伸びるまでの運動を考える。ブロックにかかる力は, 重力とば ねの力のみであるとする。図2は,ばねが最も伸びる途中までの, ばねの 長さと,プロックにかかる重力(点Aと点Cを通る太線)とばねの力 (点B と点Eを通る太線)の関係を示す。 ブロックにかかる重力とばねの力がつりあうとき,ば ねの長さはい]である。ばねの長さが Loからいに なる間に重力がブロックに行った仕事の大きさは, 図2 ろの面積と等しい。また,この間にばねの力が プロックに行った仕事の大きさは,図2の は]の面 積と等しい。したがって,ばねの長さがいのとき,ブロ ックの運動エネルギーは[ア]である。ばねがさらに 伸び,プロックの運動エネルギーが0になるのは, ばね の長さがに]のときである。 次の文章を読み, ア]に適切な数式を記せ。 天井 ばね ブロック 図1 ブロックにかかる力カ (鉛直上向きが正) Lo い の ばねのカレ傾きん ;E B D 0- ばねの長さ A重力 C! 図2 い と に |の選択肢 の Lo+ mgk の Lo+mgk 3 Lo+2mgk mg O Lo+ 2k 2 6 L+ mg 6 Lo+ 2mg k ろ の 三角形BED は |の選択肢 2 四角形 ABDC 3四角形 ABEC

回答募集中 回答数: 0
物理 高校生

106(オ)がわからないです

(2)図の最初の状態にもどる。すなわち,各スイッチは開いており、 (4)各コンデンサーの耐電圧(耐えられる電圧の限界)がすべて 45Vであるとき,合成コンデ C, Dの電位はそれぞれ Va=V(V), Va=Dオコ×V[V). [V/m]である。導体板 A, B, C, D間に蓄積されている静電エ 図1のように、十分に広い面積Sをもった平行板コンデンサーにおいて, 左側の極板Aは この状態でスイッチ S.のみを閉じた。このとき, 専体板A, B, どの導体板にも電荷は蓄えられていない。次の2つの操作後の結果を比較しよう。 d(m)、2d (m), 3d[m) とする。ここで, dは導体板の辺の長さ aと比較して十分小さいと する。国中のS,Sa. Siはスイッチを表している。 電源Vは電圧「V[V) の直流電源であり。 操作a):スイッチ S」を閉じ,しばらくしてスイッチ S,を開く。 それからスイッチS.を る文章を解答群から選べ。ただし、 数式は C, V、 dのうち必要なものを用いて答えよ。 2つの導体板 A, Bを平行板コンデンサーとみなしたときの電気容量を CIF) とする。 導体板Dは電源の負極とともに接地されている(接地点の電位を基準V とする。 また。 84 コンデンサー 85 標準間■ A つり最初の状態ではどの事体数にも電荷は書えられていたい。 °104.(コンデンサーの合成容量) 6.0Vの直流電源Eと,電気容量がそれぞれ 3.0μF, 1.5μF, 2,0μF, 2.0μFの4つのコンデンサー Ci, Ca, Cs, C4を図のように 接続し、十分に時間を経過させた。各コンデンサーは,接続する前 は電荷をもっていなかったものとして,次の問いに答えよ。 (1) 4つのコンデンサーの合成容量 C [uF] を求めよ。 (2)各コンデンサーに加わる電圧 Vi. Vz, Vs, Va [V), および蓄えら れた電気量Q,Q, Q, Q [C] を求めよ。 (3) 各コンデンサーに蓄えられた静電エネルギーの合計び [J] を求めよ。 C C。 S」 し ×V (VJ, Vo=UV である。導体板BとCの向かい合 C。 れらの間の空間に発生する電場は図で右向き, その強きは AB C E ネルギーの合計はオ|×CV2[J] である。 通体所の間属は拡大して かいてある ンサーとしての耐電圧 Vimax (V] を求めよ。 105.(ばね付きコンデンサー) (10 群馬大) 閉じる。 固定されているが、右側の極板Bは壁に固定されているばね (ばね定数k)につながカて。 て、Aに平行なまま動くことができる。極板が帯電していないとき, ばねは自然の長さのい 態にあり,極板間の距離はdであった。次に,図2のように,極板Aに正, 極板Bに自の筆 荷を徐々に帯電させるとばねは徐々に伸び,最終的に極板Aに +Q, 極板Bに -Qの雷益た 帯電させたところ, ばねの伸びが 4d (Ad <d), 極板問距離がd-ddとなったところでつり あった。真空の誘電率を Eo, 空気の比誘電率を1とする。また, ばねおよび壁の帯電, 重力 の影響はないものとする。次の問いに答えよ。ただし, (2)~~(5)は, Eo, d, k, Q, Sの中から 必要なものを用いて解答せよ。 (1) 電気力線のようすを図3に矢印で表せ。 極板間の電場の強さEを求めよ。 極板Bにはたらく電気的な力Fを求めよ。 (4) dd を求めよ。 (5) 極板間の電位差Vを求めよ。 ここで、極板Bを固定し、極板Aに +Q. 極板Bに -Qの電荷 を帯電させたまま、極板間に、比誘電率2の誘電体を図4のよう にゆっくりと差しこんだ。 6 このときの電気力線のようすを図4に矢印で表せ。 (7) Bにはたらく電気的な力は,(3)と比べてどうなるか。 を開く。 初めに操作(a)による結果を考察する。操作終了後,導体板CとDの間の電場の強さは 一カ(V/m] であり,導体板Aの電位は Via=Lキ ×V(V) である。このとき、毒体 新間全体に蓄積された静電エネルギーは,(1)のエネルギーの値オ×CV?[J) の ク]番 である。 一方,操作(b)の場合, 操作終了後に導体板AとBの同に発生する電場の強さはケ (V/m] であり, 導体板Aに蓄えられた電気量は Q=D■コ C) である。 また、事体板 A Bの電位はそれぞれ VAb= サ×1/[V), Vias=■シ×1/(V) となる。この場合、毒 体板間全体に蓄積された静電エネルギーは, (1)のエネルギーの値閉×CV*(J]の ス] 倍である。 したがって、2つの操作後の結果を比較すると次のようなことがわかる。 スイッチS。 を閉じると導体板 B, C間に発生していた電場が消失するので, スイッチを開じた直後。 その分の静電エネルギーが減少する。このとき、 セ」ということがいえる。 (2)の(b)の操作後,しばらくしてスイッチS:を開き、それからスイッチS,を開じた。この とき,導体板Cの電位は V%=[ ソ×1/[V] で, 導体板BとDに蓄えられている電気量 (絶対値)はそれぞれタ×0,[C). 「 チ]×Q&(C) となる。ここで、 &はこのコ(C である。 |セの解答群 3- d-dd- B A B otinl Foom P00000 +Q-91 図1 図2 -Q +Q 図3 +Q *106.(4枚の導体板によるコンデンサー回路) (15 広島市大 改) 図4 (a), (b)で等しくなる 間の静電エネルギーに加算される (14 東京理大改) s」a 51

回答募集中 回答数: 0