学年

教科

質問の種類

物理 高校生

なぜFが出てくるのか分かりません。 教えてください🙏🏻

の 基本例題11 接触した2物体の運動 水平でなめらかな机の上に質量がそれぞれ 2.0kg, nois cg 3kg 2kg B 3.0kgの物体A, B を接触させて置く。 A を右向きにA Mat 20N の力で押し続けるとき, 次の各問に答えよ。 大 (1) A. B の加速度の大きさはいくらか。 A,B 太さはい (2) A,Bの間でおよぼしあう力の大きさはいくらか。 指針 2つの物体が接触しながら運動して いるとき, 作用・反作用の法則から、 2つの物体 は、大きさが等しく逆向きの力をおよぼしあって いる。 A, B が受ける力を図示し, それぞれにつ いて運動方程式を立て, 連立させて求める。 解説 (1) AとBがおよぼしあう力の大 きさをF〔N〕 とすると, 各物体が受ける運動方 A F[N] F[N] 20N B [a[m/s2] AM 20N 基本問題 87,96 向の力は、図のようになる。 運動する向きを正 とし,A,Bの加速度をα 〔m/s2] とすると, そ れぞれの運動方程式は, A:2.0×a=20-F ... ① B:3.0×α=F ...2 式 ①,②から、a=4.0m/s2 (2) (1) の結果を式②に代入すると, [M] V3.0×4.0=F F=12N Point A,Bをまとめて1つの物体とみなすと, 運動方程式は, (2.0+3.0)a=20 となり, a が 求められる。 しかし, F を求めるためには、物 体ごとに運動方程式を立てる必要がある。

解決済み 回答数: 1
物理 高校生

コンデンサー 電位 (5)です 解説にある、 「S1,S2を開閉しても変化しない」 ということの意味が分かりません 教えて欲しいです🙏🙏

必修 基礎問 72 コンデンサーのつなぎかえ 図のように, 3個のコンデンサー C1, C2, C3, 2個の電池 E1, E2, 2個のスイッチ S1, S2からなる回路がある。 3個のコンデン サーの容量はすべてCであり, 2個の電 池の起電力はともにVであるとする。 は 162 HH ●電荷保存の法則 孤立部分の極板電 荷の和は保存される。 式の立て方の手 順は, ① 孤立部分を見つけ, 変化前の電荷 を確認する。 E₁ じめの状態では,各スイッチは開いており、各コンデンサーに蓄えられた電 荷は0 とする。 また,点Gを電位の基準 (電位0) とする。 1. スイッチ S1 を閉じた。 点Xの電位は(1) れた電荷は (2) である。 2.次に, スイッチ S」 を開き, スイッチ S2を閉じた。 点Xの電位は(3) (V) C2= Point 43 着目する極板の電荷: Q着目= C(V 着目V 相手) (0) である。 3. さらに,スイッチ S2 を開いて, スイッチ S, を閉じた。 点Xの電位は 電池 V (4) である。 4. このようなスイッチ操作を繰り返したとき, 点Xの電位は (5) に近づ く。 (上智大) 精講 ●極板電荷 コンデンサーの極板 A, B の電位をそれぞれ VA, VB, コンデンサーの電気容量をCとすると, それぞれ の極板の電荷QA,QB は右図のようになる。 すな わち,着目する一方の極板の電位を V 日, 向かいあう他方の極板の電位をV相手 QA=C(VA-VB) とすると, G コンデンサー C2 に蓄えら S2 (VA) E2- AB 接地点 ( 電位0) (V: 仮定) (VB) -QB=C(VB-VA) 「孤立部分 ② 回路の電位を調べ, わからないところは仮定する。 孤立部分のすべての極板電荷を求め, 電荷保存の式を立てる。 3 ●回路の電位 原則 (i) 接地点を定め, 電位の基準 (電位0) とする。 (i) 一つながりの導線は同電位である。 素子の両端の電位差 (i) 電池正極側は負極側より電位がVだけ高い。 Q (Ⅱ) コンデンサー: 電荷が正の極板から負の極板の向きにだけ電位が下がる。 : () 抵抗 電流の向きに RI だけ電位が下がる (電圧降下)。 着眼点 コンデンサーにつながる抵抗 (十分に時間が経過した場合) 電流 は 0抵抗の両端は同電位 (1),(2) コンデンサー C1, C2は直列で,電 1/12cv-/12/cr 解説 気容量が等しいので,C1, C2 の電圧は 11 となる。 よって, 点Xの電位は, C2 の電圧と等し いから, 2=1/12/1 U₁² よって, 2 の電気量 Q2 Q2=(1/2)=1/2CV (3) 点Xの電位をV」 とすると, コンデンサー C2, C3のX側 の極板電荷の和が保存されることより, 11 0+12CV=C(Vi-V)+CV よって, Vi=201 (4) スイッチ S1 を閉じる前, コンデンサーCのX側の極 板電荷は12CV, C2のX側の極板電荷は 12 CV である。 よって、点Xの電位を2 とすると, 電荷保存の法則より、 -1/12CV+242CV=C(u2-V) + Cu 5 8 (5) スイッチ S1, S2 を開閉しても変化しないことから, S1, よって, u2= V S2を同時に閉じた場合と同じ状態になる。 点Xの電位を V とすると,電荷保存の法則より、 0=C(V-V) +C (V-V) + CV よって、a=2 3 (1) 2/1/201 V (2) 12/2CV (3) 2 200 31 ト ¹-CV C(V-V) -C(V-V) (V) (V.) 2CV1 T-CV₁ T-i/cr -CV 2 G (0) G (0) -C(M2-V) C(M2-V) (V) (V) 2 (5) V 3 .X (u) _Cu FCM2 DE CV- G (0) CV. G(0) (V) 19. 電場 コンデンサー 163 第4章 電気と随気

解決済み 回答数: 1