学年

教科

質問の種類

物理 高校生

至急!この問題の解法を教えてください🙇‍♀️

必 76. 〈円形波の反射〉 5.0Hzの円形波が次々と送り出され, 水面上を伝わっていく。図で円は 水面波の山の位置を表している。 0を通り器壁に平行な直線上で0から 8.0m離れた点をPとする。 OからPの向きにのびる半直線を破線で表 し, Lとよぶ。 0から送り出された波はやがて器壁で反射するが, 反射 の際、波の振幅および位相は変わらないとする。 また, 水槽内の水面は 図のように、水槽の器壁から3.0m離れた点を波源として, 振動数 十分に広く水深は一様で、一度反射した波が再び器壁にもどることはな 8.0m P 3.0m く,水面を伝わる波の速さは一定であるとする。さらに,波の振幅の減衰はないものとする。 (1) 0から出た1つの円形波Cが器壁に届き反射した後, 反射波の山がPに達した。 この瞬 間の波C全体の山の位置(実線)を正しく表した図は(ア)~(エ)のどれか。 (ア) (イ) (ウ) (エ) ここでL上の任意の点をQとし, OQ=x[m] とおく。 Qでの, 0から直接届いた波と器 壁で反射して届いた波の干渉を考える。 22 波長を入[m], n=1, 2,...として,Qで2つの波が弱めあう条件を書くと, =(2-1) 1/12 となる。□に当てはまる式を入れよ。 いまx=8.0m の点Pでは2つの波が干渉した結果, 互いに弱めあい, 水位が変化しない という。また, L上で水位が同様に変化しない点のうち,0から見てPよりも遠くにあるの は2個だけであった。 PはL上で(2)で得られた条件を満たす点のうち, nがいくつに相当するか。 (4)入は何か。

回答募集中 回答数: 0
物理 高校生

fbc=ma になる理由が分かりません... fbc=5ma になると思ったのですがなぜでしょうか…?

D 思考 179. 積み重ねた物体 図のように, 水平でな C めらかな床の上に, 質量がそれぞれ3m,2m, mの直方体の物体A, B, C, 積み重ねて置 かれている。 中央の物体Bにひもをつけて、 A 第Ⅰ章 力学Ⅰ この上面に乗り移り の大きさを 定の大きさの力で右向きに引く。 AとBとの間, BとCとの間の摩擦係数は等しいとし, 静止摩 擦係数をμ, 動摩擦係数をμ'とする。 また, 重 力加速度の大きさをg とする。 B ひもを大きさ T, の力で引いたところ,A, B, Cは一体となって運動した。 ただし、小物体 (1) 物体の加速度の大きさαを求めよ。 CDの加速度を までの時間を を求めよ。 距離を求めよ。 (関西 h (2) AとBとの間にはたらいている摩擦力の大きさ∫AB と,BとCとの間にはたらいて いる摩擦力の大きさ/Bcをそれぞれ求めよ。 (3) 静止していた状態から, 水平距離 dを進んだときの物体の速さを求めよ。 (4) ひもを大きさ T2 の力で引いたところ,BとCは一体となって運動したが, AとB との間にはすべりが生じた。 T2 はいくらより大きくなければならないか。 (5) ひもを大きさ T3 の力で引いたところ, AとB,BとCとの間にそれぞれすべりが 生じた。3つの物体は,それぞれ重なりあう物体と面を接して運動している。このと きの,A,B,Cの加速度の大きさをそれぞれ求めよ。 思考やや難 180. 重ねた物体の運動 図のように, 水 平面上に質量Mの台車を置き, その上に質 量mの物体をのせた。台車と水平面, 斜面 物体 1台車 (静岡県立大改)

解決済み 回答数: 1
物理 高校生

(2)について質問です。 (2)ではAとBを合わせた力学的エネルギーの保存を考えてますが、Aと Bそれぞれで力学的エネルギーは保存されないのでしょうか?

基本例題 27 力学的エネルギーの保存 117~121 解説動画 定滑車に糸をかけ, 両端に質量mおよびM (M>m) の小球 A, Bを取りつけた。 Aは水平な床に接し, Bは床からんの高さに保持 されて糸はたるみのない状態になっている。 いま, Bを静かにはな すとBは下降を始めた。 重力加速度の大きさをg とし,床を高さの 基準とする。 (1) Bが床に衝突する直前の A, B の速さをvとする。 このとき, A, B がもつ力学的エネルギーはそれぞれいくらか。 (2) B が床に衝突する直前の A,Bの速さ”はいくらか。 A B 指針 A,B には,重力(保存力)のほかに糸の張力 (保存力以外の力)もはたらくが,張力が A, B にする仕事は,正, 負で相殺するので, 力学的エネルギーは保存される。 A:0+0=0 B: 0+Mgh=Mgh 解答 (1) B が衝突する直前の力学的エネルギ A, B をあわせて考えると、 全体の力学 エネルギーは保存されるので ーはそれぞれ 1 A : 121m²+mgh 1 2 B: Mv² +0=Mv² (2) 最初 (Bをはなした直後) の力学的 よって v= エネルギーはそれぞれ 0+Mgh=(1/12mi mu2+mgh+Mv2 gh) + 1/12 Mv² 2(M-m)gh M+m 21

回答募集中 回答数: 0
物理 高校生

Ⅳの(3)でd/3までの釣り合いが安定でそれより大きくなると不安定になる理由がわからないです。教えて頂きたいです。よろしくお願いします。

図 2-3 (a) のように, 前間と同じ平行板コンデンサーの極板P を自然長 ばね定数の絶縁体の軽い ばねに接続し ばねの他端を壁に固定した. また, 極板 P2 を壁から距離 l+dの位置に固定した (極板の厚さ は無視できる)、 極板 P1 P2 には, それぞれ電荷 +Q (Q > 0), -Qが蓄えられている。 また, 壁とばねの静 電誘導による電荷は無視できるものとする。 質量mの極板P は極板P と平行な位置関係を保って左右にな めらかに動くことができるものとする。 極板P1 に力を加えて壁から距離の位置に保持した。 極板P1 と極板 P2の間の電場の大きさをE。 とする. 図2-3 (b) のように極板P」を壁から距離(+ェの位置にゆっくりと移動した。 極板 P, にばねからはたら く力と極板間の静電気力がつりあうときの位置を Q, Fo, k, m, co のうち必要な記号を用いて表せ、ただ し, 0<x<d とする. ⅣV 次に, P1 を図2-3(a) の位置に戻し、 図2-4 (a)のようにスイッチと電圧Vo(> 0)の直流電源に接続し た。その後、スイッチを閉じ, 極板 P, に力を加えて図2-4(b) のように壁から距離+æの位置にゆっくり と移動した(ただし<z<dとする)。その後,極板 P, を移動するために加えていた力をなくした。導線が -Kx Pl + Q 0000000000 d (a) 10000000 極板P が及ぼす力は考えない (1) 極板 P1 が壁から距離1+の位置にあるときに極板P, にはたらく力F (x) を Vo, S, d, z, k, m, Eo のうち必要な記号を用いて表せ。 ただし, 極板 P1 から P2 に向かう向きを正とする. (2) 極板 P1 にはたらくばねからの力と極板間の静電気力がつりあう位置が存在するためには, Vo はある上 限値Vm より小さくなければならない。このVm を S, d, k, m, so のうち必要な記号を用いて表せ. (3) Vo Vmの場合に存在するつりあいの安定性について説明せよ。 ただし, 「a <æ <bの範囲に存在す るつりあいは安定(または不安定)」 という形式で,存在するすべてのつりあいについて言及せよ. Foyd FEQ P₁ P2 +Q 0000000000 HI l+x (b) ・ 114471 9 図2-3 P₁ P₂ 0000000000 V₁ (a) 図2-4 l+x d-x GV (b) 萬 Fol F:EG

解決済み 回答数: 1
物理 高校生

至急!この問題の(1)から(4)の解説をお願いします🙇‍♀️

必 76. 〈円形波の反射〉 図のように、水槽の器壁から3.0m離れた点を波源として,振動数 5.0Hz の円形波が次々と送り出され, 水面上を伝わっていく。 図で円は 水面波の山の位置を表している。0を通り器壁に平行な直線上でOから 8.0m離れた点をPとする。 OからPの向きにのびる半直線を破線で表 し, Lとよぶ。 0から送り出された波はやがて器壁で反射するが,反射 の際, 波の振幅および位相は変わらないとする。 また, 水槽内の水面は 十分に広く水深は一様で、一度反射した波が再び器壁にもどることはな P 3.0ml 8.0m Q く、水面を伝わる波の速さは一定であるとする。さらに、波の振幅の減衰はないものとする。 (1) 0から出た1つの円形波Cが器壁に届き反射した後, 反射波の山がPに達した。 この瞬 間の波C全体の山の位置(実線)を正しく表した図は(ア)~(エ)のどれか。 (ア) P (イ) (ウ) (エ) ここでL上の任意の点をQとし, OQ=x[m] とおく。 Qでの, 0から直接届いた波と器 壁で反射して届いた波の干渉を考える。 42 波長を入[m], n=1, 2,...として,Qで2つの波が弱めあう条件を書くと, =(2-1) 12/12 となる。 □に当てはまる式を入れよ。 いま x=8.0m の点Pでは2つの波が干渉した結果, 互いに弱めあい, 水位が変化しない という。また, L上で水位が同様に変化しない点のうち,0から見てPよりも遠くにあるの は2個だけであった。 PはL上で(2)で得られた条件を満たす点のうち, nがいくつに相当するか。 (4) 入は何か。

回答募集中 回答数: 0