学年

教科

質問の種類

物理 高校生

1番下の式に重力を斜面方向に分解した分力の仕事が書かれないのは何故ですか? 運動中は働かなということですか?

チェック問題 3 滑車と放物運動 やや難 15分 図のように, 上端に滑車のつい また傾角30°の粗い斜面がある。 質量 mの台車 Aの上に質量mの球Bを 乗せ、軽い糸で滑車を通して質量 4mのおもりCにつなげ, 全体を静 かに平板上に置いた。台車は,動 √3 m B C mA 4m 30° 車 摩擦係数・ の斜面上Lだけ登り, 滑車に衝突すると, 球はその 3 ときの初速度で空中に飛び出していって最高点に達した。 (1) 球が飛び出す速さ はいくらか。 (2) 球が飛び出した位置からはかった,最高点の高さんはい くらか。ただし、最高点での球の速さは0となる。 解説 (1) 速さを問うので,エネルギーで解 こう。 まずは、動摩擦力から出してみよう。 図aで,台車と球の斜面と垂直方向の力のつ り合いの式により垂直抗力 N は, -30° N = 2mg cos30°= √3mg 2mg よって、動摩擦力の大きさ Fは, 図 a √3 √3 3 3 F = 1 -N= × √3mg = mg ① ここで,台車と球に注目して 《仕事とエネル ギーの関係》を立てると、 「3要素は (ばねナシ), 前 (速さ0), (高さ0とする) 中し T OF 130° 後 (速さひ)(高さはLsin30°=12L)で. 高さ 0 とする 図 b |---------- 1 0+ (−F × L) + (張力T) ×L=1/22m² +2mg×1/2 L となるね。 未知 この式からは求まるかい? 12

回答募集中 回答数: 0
物理 高校生

この問題全部教えていただきたいです😭

知識 物理 第Ⅰ章 運動とエネルギー 12. 速度の分解物体が, xy平面上を図のような速度で進 VA 20m/s んでいる。物体の速度のx方向の成分, y方向の成分をそれ ぞれ求めよ。 130° 知識 13. 相対速度 南向きに速さ20m/sで進む電車の中に, A君が座っている。 A君から 見ると, 線路に沿って走る自動車の中のB君は, 北向きに速さ15m/sで進んでいるよう に見えた。地面に対するB君の速度を求めよ。 例題2 ヒント (相対速度)=(相手の速度) (観測者の速度) として, ベクトルを図示する。 [知識 物理 14. 平面運動の相対速度 A君は,南向きに速さ20m/sで進む電車の中に座っており, Bさんは, 線路に対して斜めに交差する道路を走る自動車に乗っている。 A君から見る と,Bさんは,東向きに速さ15m/sで遠ざかっていくように見えた。 地面に対するBさ んの速さを求めよ。 [知識 物理 15. 平面運動の相対速度 水平な直線状のレールを, 速さ5.0m/s で走っている電車内の人が, 地面に対して鉛直下向きに降る雨を 見る。このとき, 雨滴は,鉛直方向と30°の角をなして落下して いるように見えた。 地面に対する雨滴の落下の速さを求めよ。 思考 30° 16. 運動の解析表は,斜面に沿ってすべりおりる物体の連続写真から得られた,位置 x [cm] と時刻 t [s] との関係を示したものである。 次の各問に答えよ。 (1) 物体の 0.1s ごとの変位⊿x [cm〕, 平均の速度v [cm/s] を計算し, 表に記入せよ。 (2) 物体の速度v [cm/s] と時刻t[s] との関係を表すグラフを描け。 (3) 物体の加速度の大きさは何m/s2 か。 有効数字を2桁として求めよ。 時刻 位置 0.1s ごとの 平均の速度 t(s) x[cm] 変位⊿x[cm] v 〔cm/s] 0 1.2 0.1 4.2 0.2 9.1 0.3 16.1 0.4 25.1 [cm/s]* 80 60 40 20 t[s] 0 0.1 0.2 0.3 0.4 [知識] 17. 平均の加速度と瞬間の加速度図は, x軸上を運動 している物体の速度 [m/s] と時刻 t [s] との関係を表し ている。図中の直線は, 時刻 2.0sにおける接線である。 次の各問に答えよ。 v[m/s] 16.0 10.0 6.0 (1) 時刻 2.0~7.0sの間の平均の加速度を求めよ。 t〔s〕 (2)時刻 2.0s における瞬間の加速度を求めよ。 0 2.0 7.0 例題 3 1.物体の運動 9

回答募集中 回答数: 0
物理 高校生

Wacって 緑で合ってますか?

の公式より、T=2 m √ ka • TB =1倍 T=√2k-1 10% TA VRD =2 となる。 ka 7B とすると, ばね振り子の周期 T=221 2m である。以上より, の答 2 電体は正者 西原休日は漁電西なので、いずれも 4C につくる電場の向きはAからBの向きである。AとBの電気 量の大きさQが等しく, AOBOの距離もRで等しい。 した って, AとBがそれぞれ点0につくる電場の強さ Ex, Eaは 等しく, 点電荷による電場の公式より,Ex=E kQ R2 となる。 以上より, AとBが点0につくる電場は,それぞれの電場を合 成して, AからBの向きへ強さ 2kQとなる。 R2 ばね振り子の周 T-2 また,一様な電場から A には左向きに, B には右向きに静電気 力がはたらくことになる。 よって, 一様な電場をかけた直後、リ ングは反時計回りに回転しはじめた。 +Q 一様な電場から 受ける静電気力 +Q リング A 回転をはじめる方向 T: ばね定 質量 点電荷によ 電気量 いる点の電 E=k R: 電場の 遠ざかる く向き。 EA EB 一様な電場 B. B Q -Q 一様な電場から 6 受ける静電気力 2の答 ① 3の答③ 問3 過程1から過程3の状態変化を圧力と体積の関係を表すグラ フに書き換えると,次図のようになる。 状態AとBは同じ温度 なので,それらの温度で決まる等温曲線上にあり,状態CとD も同じ温度なので、それらの温度で決まる等温曲線上にある。 こ こで,圧力と体積の関係を表すグラフの面積は,気体が外部にし た仕事の大きさを表す。 したがって, 気体が外部にする仕事の大 小関係は,グラフの面積を比較すればよい。 次図より,それぞれ の過程で気体が外部にする仕事の大小関係は, Wac<WAB<WAD - 103 -

回答募集中 回答数: 0