学年

教科

質問の種類

物理 高校生

写真の問題の赤線部についてですが、問題ではvがそれぞれ45°と角度が等しいことから、 赤線部のような作図をするとOPQが二等辺三角形になりOP=OQが半径であることから交点Oが円の中心であると求めることができると思うのですが、例えばPにおける角度が30°でQにおける角度が6... 続きを読む

85 ローレンツカ 一様な電場, または一様な磁場の中で, 正に帯電 した粒子が平面内を運動した。 図に示すように,平 面内の直線上に距離Lだけ離れた2点P, Q があ り,粒子は,点Pを直線と45°をなす方向に速さ 1916.h P V x 2 荷電粒子は磁場から進行方向に垂直なローレンツカ を受け, これが向心力となって等速円運動をする。点 P, 点Qを通りそれぞれの速度ベクトルに垂直な直線 をひく(図b)。 この2直線の上に円の中心があるの で, その交点が中心0になる。点Pにおける向心力は POの向きであるから, フレミングの左手の法則より 磁場は紙面に垂直で裏から表の向きになるので、⑤が正しい。 45° で通過した後、点Qを直線と45° をなす方向に同じ速さで通過した *A-0LMPI 5MODUSERT 問1 このとき, 電場や磁場の向きとして最も なものを、 右の①~⑥のうちから一つずつ選べ。 ただし、同じものを繰り返し選んでもよい。 電場の場合: 1 磁場の場合: 2 AOO GEL Pf 45° 図 b ひ (2016) 紙面に垂直で裏から表の向き 紙面に垂直で表から裏の向き 1 V

回答募集中 回答数: 0
物理 高校生

37のスについて 解答でキルヒホッフ第2の法則を用いていますが、どこの閉回路についてなのでしょうか?

さの方向(Bの方向とPの運動方向の両方に垂直な方向) に大きさがの 端には起電力が生じる。 このとき, Pの内部の電場の大きさは であり、 (イ) 力を受ける。 その結果, Pの片側は電子が過剰になって負に帯電しPの画 この電場から電子が受ける力の大きさはエ)である。 電場から電子が受ける力 と電子に働く (イ) 力はつりあうと考えてよいので、V=(オ)が得られる。 (2) 次にSが閉じている場合を考える。 Pの支えをはずすと同時に, P, Q に初速度 での間, PとQは速さ uo の等速運動を行った。 このときQが1秒間に失う位置エネ uo を与えるようにQを鉛直方向に引きおろしたところ, Pがレールの端に達するま 秒間にRで発生する熱量は() となる。 等速運動では, P, Qの運動エネルギー ルギーは (カ) である。 また. この運動中, R の両端の電位差は (キ)であり,1 (秋田大) が変化しないことを考慮すると, uo は (ケ) となることがわかる。 212 図に示すように電圧e [V] の交 電源電圧 E〔V〕 の直流電源E, 抵抗値がそれぞれ R [Ω], R2 〔9〕, a R3 [Ω] の抵抗 Rs, R2, R3, 電気容量 C [F] E のコンデンサー C. 鉄心に巻かれたコイル (37 鉄心 R₁ Sis INT R₂ S₁ S₂ S, コイル2 12.0 コイル1 1とコイル2およびスイッチ S1,S2, S3, S, で構成される回路がある。ここで, コイル 1, コイル2および電源の抵抗は考えな いものとする。また,コイル1の自己インダクタンスをム [H], コイル1とコイル 2 の相互インダクタンスを M [H] (M> 0) とする。最初, コンデンサーには電荷がな く,すべてのスイッチは開いた状態にあるとして,以下の文章中の を埋めよ。 なお,図中で電圧 e, E, v1, v2 と電流 is, i2, is の正方向はそれぞれに付けている矢印 により定義する。電圧の矢印は矢の根元に対する矢の先端の電圧を表し,例えば図の 電圧eは, a点の電位がb点の電位より高いと正である。 電流は, 矢印の方向に正電 荷が移動している場合を正とする。 (1) スイッチ S と S3 だけを同時に閉じた。 このとき抵抗R に流れる電流は, [ア][A] である。コンデンサーのスイッチ S3側の極板の電荷をqとすると, q は (イ) [C] である。 gが微小時間 ⊿t[s] の間に 4g 〔C〕 だけ変化するとすれば、 コンデンサーに流れる電流はこれらを用いて,(ウ) 〔A〕 と表される。 交流電源 の電圧が, e=Eosinwt で与えられるときは (エ) 〔A〕 と求められる。ただし, E〔V〕 およびω 〔rad/s] は定数, t [s] は時間である。 交流電圧 Eosinwt の実効値 は (オ) [V] , 周波数が60 [Hz] の電源の場合, ω は (カ) [rad/s] となる。 (2) 次に, スイッチ S と S3 を開いてからスイッチ S2とS を同時に閉じたところ、 コイルに流れる電流 is は徐々に増加し, しばらくすると一定の値になった。 なお, コイル2の端子c, d には何も接続していない。 電流が微小時間 4t 〔s] の間に ⊿is 〔A〕 だけ変化したとき, コイル1の両端に生じる電圧 vi は, (キ) [V] で, 図 の電圧v2 は (ク) 〔V〕 である。 このように, コイル1によってコイル2に電圧が (A) で, 電流はえを用いると (サ) [A] である。 また、このときの電圧 2 は 生じる現象は (ケ) とよばれる。 電流が一定の定常状態では、電流は [V] である。 is 04 (A) 11:28, 10, 12(V), BE P その後, スイッチ S は閉じたままスイッチ S2を開いたところ、電流は徐々に 減少した。 この電流の は (セ)[V] である。 (長崎大) 内部抵抗が無視できる電圧E [V] の 直流電源 E, 抵抗値R [Ω] の抵抗 R, 自 己インダクタンスL[H] のコイルL 気容量がC〔F〕 のコンデンサーCからなる図1 (38) の回路について,以下の問いに答えよ。 ただし, 初期状態では、スイッチは中立の位置bにあ コンデンサーは帯電していないものとする。 り、 また, 抵抗に流れる電流 IR 〔A〕 およびコイルに流れる電流 [A] は、図1の矢印の とする。 1 向きを正の向きと (1) 初期状態から, Sをaに接続した直後に, 抵抗に流れる電流 IR [A] を求めよ。 (5) (2) コンデンサーの極板間の電圧V[V] [V] になったときの電流 IR [A] を求めよ。 ・t 175/1 (③) 十分に時間が経ったときの電流 IR [A] を求めよ。 (4) 電流 IR 〔A〕 と時間 t [s] の関係を表すグラフはどれか。 図2の①〜 12 のうちから 正しいものを一つ選べ。 ただし, Sをaに接続したときを t=0 とする。 20 6 t R M W 9 10 0 C. OF 図1 -t LL 8 AM 12 第4章 電気と磁気 図2 (5) 十分に時間が経ったときのコンデンサーにたまっている電気量 Q [C] を求めよ。 (6) 十分に時間が経った後, Scに接続したとき、 コイルに流れる電流と時間 の関係を表すグラフはどれか。 図2の①〜 12 のうちから正しいものを一つ選べ。 た だし,Sをcに接続したときを t=0 とする。 (7) (6)における電流 [A] の最大値を求めよ。 (福井大) 演習問題 213

未解決 回答数: 1
物理 高校生

電磁誘導について 1)のPQを流れる電流がどうしてI=E-V/Rで表されるのか分かりません レンツの法則でPQにはP→Qの向きに電流が流れるから、I=E+V/Rとはならないのですか?

<発展例題 78 運動する導体棒に生じる誘導起電力・ 図のように,鉛直下向きで磁束密度Bの一様な磁場 中に,起電力Eの電池をはさんだ間隔lのコの字型の 導線のレールを傾きの角で固定する。 これに電気抵 抗Rをもつ長さ 質量mの導体棒PQをのせ、手で 押さえておく。 手を静かに放すと, PQはレールに直交 IN したまま斜面を上昇した。 PQ とレールとの間の摩擦およびPQ以外の部分の電気 抵抗はなく,重力加速度の大きさをgとする。 大の比 LUPO OF (1) PQの速さがになった。このときの誘導起電力の大きさ V,PQを流れる電 流の大きさⅠ, この電流が磁場から受ける力の大きさF を求めよ。 (2) 手を放してもPQ が動かない場合の傾きの角を0とする。 tano はいくらか。 17 解答 考え方 (1) 誘導電流が閉回路を貫く下向きの磁束をつくるように、 誘導起電力が生じる。 (2) 手を放してもPQが動かないv=0 で, PQ が受ける斜面方向の力はつりあう。 (0) い (1) V= I1= |_1.44 |_ B•lu4tcos0 _Pioned =vBicoso icos 4t v=|-1.40|= GRE-VE-vlcose F=IBl=- = R 直で上R BI P 10 > [補足] A]\T (E-vBlcos0) Bl 10 B F R 25 191 21 が受ける斜面方向の力について,v=0 の場合のF (=) 50 Bに垂直 04t vat cose

未解決 回答数: 1
物理 高校生

ローレンツ力の範囲です。(4)について質問なのですがeは何故マイナスを付けないのでしょうか。

半導体を用いて磁束 密度を測定する。 図のように x,y,z軸をとり、電流の 担い手が電子である半導体を置く。この半導体は x,y, 方向の長さが α, b, c の直方体である。 x軸に垂直な 面をP, Qで,y軸に垂直な面をR, Sで表す。 (1) 半導体の面Rから面Sに向かってy軸の正の向きに 第19章・電流と磁場 161 A BI J [電流Ⅰ〔A〕 を流した状態で, 磁束密度B[T]の一様な磁場がx軸の正の向きに加わる ようにする。 このとき, 半導体の内部を平均の速さv[m/s] y 軸方向に移動する 電子(電気量 -e 〔C〕) は,磁場から力F [N] を受ける。 Fの向きと大きさを答えよ。 (2) x軸方向に電流を取り出さないものとすると、この方向に電場 Ex〔V/m〕 が現れる。 ① 電場 Ex が生じる理由を述べよ。 ② 電場 Exの大きさを求めよ。 ③ 定常状態で,面Pと面Qの間に生じる電位差 Vx 〔V〕 を求めよ。 ④ 電位が高いのは面P, 面Qのどちらか。 X ●(3) 半導体内の1m²当たりの自由電子の数をn 〔1/m² 〕 とする。 電子が移動する平均の 速さを,電流Iの関数として表せ。 OL ●●(4) α =5.0×10-3m, b=1.0×10m,c=5.0×10m, n=2.5×10 /m²の半導体を用い て磁束密度を測定した。 半導体に流す電流を I=2.0×10-A としたとき, 面Pと面 Qの間の電位差は Vx=5.0×10-V であった。 磁束密度Bの大きさを求めよ。 ただ し,e=1.6×10 - 19 C とせよ。

回答募集中 回答数: 0
物理 高校生

以前にも質問させていただきました。 写真についてですが、この導体棒が回路に繋がれていない時は、ローレンツ力と静電気力が釣り合っていて、この導体棒を回路に繋ぐとP→Qに向かって電子が流れますが、この現象の理解にあたって、「物体が置いてあるテーブルを引き抜くと、(垂直効力がなく... 続きを読む

V=vBlのルーツをさぐってみよう。導体棒をvで動かすと,中の自由電 子は P→Qの向きのローレンツ力 evB を受けて移動し(図a), Q端に集ま る。 一方, P端では電子がいなくなって + が顔を出す。 この +, - が P→Qの向きに電場Eをつくり、残りの 自由電子は evBとは逆向きの静電気力 FeEを受ける。電子の移動とともにEが 増し, やがて eE=evB となって力がつ り合うと,電子の移動は止む(とは言え, アッという間のできごと)。E=vBが電 場の最終値だ。 PQ間の電位差はV=El=vBl で P が高電位側なので図cのような電池に なっている。 図 a 図b 図 C ローレンツ力と要場の2つの力を 受ける P P 高電位 電流が流れる 電磁力 磁場中で 荷電粒子が動くローレンツカ 誘導起電力 金属棒が動く BA eE V evB evB Q 低電位 F=IBU f=guB V=vBl (いずれも垂直成分が命) ちょっと一言 ローレンツ力が電磁力と誘導起電力の原因になっているという認 識も大切。 磁気ではいろいろな量の向きの決め方が登場したが,電流がつくる 磁場は右ねじで,電磁力, ローレンツ力は1つの方法 (たとえば左手) すいしょう で扱える。 誘導起電力は右ねじが推奨法。

回答募集中 回答数: 0