学年

教科

質問の種類

物理 高校生

RT0はP0V0と書いても丸になりますか?

24 0 ふる あ 発展例題28 Vグラフと熱効率 単原子分子からなる理想気体1mol をシリンダー内に密 閉し、図のように,圧力と体積VをA→B→C→D→Aの2 順に変化させた。 Aの絶対温度を To, 気体定数をRとする。 (1)この過程で気体がした仕事の和W'はいくらか。 発展問題 328 BC Do A D (2) AB, およびB→Cの過程で,気体が吸収した熱はそ 0 Vo 2V V 0 れぞれいくらか。 (3)この過程を熱機関とみなし, 有効数字を2桁として熱効率を求めよ。 指針 気体が外部と仕事のやりとりをする 過程は,体積に増減が生じたときであり,B→C, D→Aである。 なお,熱効率は,高温熱源から得 た熱に対する仕事の割合である。 Q1 は,定積モル比熱 「Cv=3R/2」 を用いて Q=nCvAT=1×122×(2T-T)=22RT 3 V B→Cは定圧変化である。 気体が吸収した熱量 TA 解説 (1) DAでは, 気体がする仕事 は負になるので, 整理 W'=2po (2Vo-Vo-po (2Vo-Vo)=poVo (2) B, C, D の温度 TB, Tc, TD は,Aとそれ ぞれボイル・シャルルの法則の式を立てると, povo 2po Vo po Vo 2po.2 Vo = To TB To Tc DoVo To Po.2Vo TD TB=2To, Tc=4To, Tp=2To A→Bは定積変化である。 気体が吸収した熱量 Q2は,定圧モル比熱 「Cp=5R/2」 を用いて Q₂=nC₂4T=1׳R×(4T,−2T₁)=5RT, (3)TcTp, T, Ta から, C→D, D→Aで はいずれも熱を放出している。 したがって, W povo Q1 + Q2 (3RT/2)+5RT 熱効率e は, e= Aにおける気体の状態方程式poV=RT から, e= po Vo 13RT/2 DoVo 13po Vo/2 = 2 13 = 0.153 0.15 327 明照

解決済み 回答数: 1
物理 高校生

熱力学です STEP3でQinがn(Cv+R)(T2-T1)となってますが、どうやってこれ出してますか??

>>1 圧縮 比例 1 V グラフ ら、熱 出題パターン 38 定モル比熱と定圧モル比熱 「ピストンつきの容器内に, n モルの理想気体が, 体積V1, 温度Tで閉じ こめられている。 大気圧はp, 気体定数は R, 定積モル比熱を Cvとする。 「ピストンを自由に動けるようにして、熱を与えて温度をT2にした。この とき, 内部エネルギーの変化 4U, 気体が外部にした仕事 Wout. 気体に加 えた熱 Qin はいくらか。 また、 以上の結果から,気体の定積モル比熱 Cr と 定圧モル比熱 C, の間にはどのような関係があるか。 解答のポイント! 定圧変化であっても4U = Con⊿T の形となることに注意。 解法 熱力学の解法3ステップで解く。 AJR STEP1 変化の前後でのか,Vn,Tを 図示する。 ここでピストンは自由に動けるので, ピストン内の気体の圧力は大気圧とつりあって いて,いつもpとなる。 このように、大気圧、 重力などの一定の力を受け自由に動けるピスト 前 p V₁ 4 大気圧 nTi ンでは、必ず定圧変化になるのだ。 また、後の圧力 体積を V2 (未知数) とおくと, DV2 n T2 大気 1圧 図 11-4 前 (3 p Nout 前:pV=nRT ... 1 負 後:pV2=nRT ... ② -Wout E縮 STEP2 Vグラフは図11-5のようにな る。 色のついた部分の面積が外へした仕事 Wout V₁ V2 体積V 1). になる。 図 11-5 いる にあ STEP3 熱力学第1法則を表 (表中雪)にまとめると, Qin n(Cy+R) (T2-T, + 4U Wout Cyn (T-T) |p (V2-V)=nR(T2-T) (1②より) また,定圧モル比熱 C, は, 圧力一定で1モルの気体を1K上昇させるのに要する熱 であるので,Qmでn=1 [mol], T2-T=1 [K] としたものに等しく. C=1x (Cy+R)×1=Cv+R この式は理想気体であれば必ず成立するので、この例題とともに覚えておこう。 STAGE 11 気体の熱力学 125

解決済み 回答数: 1
物理 高校生

熱力学です STEP3でQinがn(Cv+R)(T2-T1)となってますが、どうやってこれ出してますか??

出題パターン 38 定積モル比熱と定圧モル比熱 ピストンつきの容器内に、 モルの理想気体が, 体積 V1. 温度Tで閉じ こめられている。 大気圧はp, 気体定数は R, 定積モル比熱をCとする ピストンを自由に動けるようにして、熱を与えて温度を T2 にした。この とき, 内部エネルギーの変化 4U, 気体が外部にした仕事 Wout 気体に加 えた熱 Qin はいくらか。 また、 以上の結果から, 気体の定積モル比熱 Cr と 定圧モル比熱Cの間にはどのような関係があるか。 解答のポイント! 定圧変化であっても 4UCn4T の形となることに注意。 解法 熱力学の解法3ステップで解く。 STEP1 変化の前後でのか,V,n,Tを 図示する。 ここでピストンは自由に動けるので、 ピストン内の気体の圧力は大気圧とつりあって いて、いつもp となる。 このように、大気圧, 重力などの一定の力を受け自由に動けるピスト 前 p V₁ 大気圧 nTi D V2 大気 nT2 図 11-4 ンでは、必ず定圧変化になるのだ。 また後の圧力は最 体積を V2 (未知数) とおくと, 前:pV=RT ... ① 前 圧 Wout 後:pV2=nRT2 ... ② STEP2 Vグラフは図11-5のようにな る。 色のついた部分の面積が外へした仕事 Wout になる。 0 V₁ V2 体積V 図11-5 STEP3 熱力学第1法則を表 (表中) にまとめると, Qin 4U + Wout n(Cy+R) (T2-T) Crn (T2-T)p (V2-V)=nR(T2-T) (1 ②より) また,定圧モル比熱 C, は, 圧力一定で1モルの気体を1K上昇させるのに要する熱 であるので,Qmmでn=1 [mol], T2-T, = 1 [K] としたものに等しく =1x (C+R)×1= [Cy+R この式は理想気体であれば必ず成立するので、 この例題とともに覚えておこう。 STAGE 11 気体の熱力学 125

解決済み 回答数: 1
物理 高校生

高1物理基礎の問題です。初歩的な質問なのですが、 写真の(1)の答えがなぜ「14.0m/s」と有効数字3ケタで表されるのかわかりません。 わかる方教えてください🙇

リードC 例題 6 等加速度直線運動 第1章 運動の表し方 11 13,14,15,16,17 解説動画 東西に通じる直線道路を東向きに 8.0m/sの速さで進んでいた自動車が,点 8.0m/s 0を通過した瞬間から東向きに 2.0m/s2の一定の加速度で 3.0秒間加速し, そ の後一定の速度で進んだ。 (1) 加速し始めてから3.0秒後の自動車の速度はどの向きに何m/sか。 (2) 加速し始めてから3.0秒間に自動車が進んだ距離は何mか。 (3) (1)の速度で進んでいた自動車はある瞬間から一定の加速度で減速し, 20m進んだときに東向きに6.0m/s の速さになった。 加速度はどの向きに何m/s2 か。 指針 v=vot at ...... ①, x=vot+ +at² ....②, v-vo2=2ax t が関係する (与えられている, または求める)場合は①式か②式、そうでない場合は ③式を使う。 ① 式と②式はと xのいずれが関係するかで判断する。 解答 東向きを正の向きとする。 (1) 速度を [m/s] とすると, ①式より v=8.0+2.0×3.0=14.0m/s よって、 東向きに 14.0m/s (2)x [m] 進んだとすると, ②式より x=8.0×3.0+ ×2.0×3.02=33m (3) 加速度をα [m/s] とすると,③式より 6.02-14.02=2α×20 36-196=40a よって a=-4.0m/s² したがって、 西向きに 4.0m/s2

解決済み 回答数: 1
物理 高校生

(3)の解説の変化量のところがわからないです。変化量はどうやって出しているのですか

したがって, 比熱の比は、 例題 S 混合気体 ~ Sast 9912 (5)融解曲 25 29 容積 2.0L, 4.0Lの容器 A, Bが,図のよ うに連結されている。 容器Aにはメタン, 容 器Bには酸素を入れて,ある温度にすると, 圧力はそれぞれ3.0×105 Pa, 6.0×105 Pa だった。コックを開けて気体を混合し、点火 して完全に反応させた後, 元の温度に戻した。 連結管やコック,および, 生じる水 の体積や、水蒸気の蒸気圧は無視してよい。 分子量 CH4=16.0,O2=32.0 点火装置 容器B A 20 想気 (a) f 2.0L 4.0L コック (b) 2 の の (c)】 (1) 反応前の混合気体中のメタンの分圧は何 Paか。 (d) (2) 反応前の容器内の全圧は何Paか。 (3) 反応後の容器内の全圧は何Paか。 KeyPoint 点火前後で温度一定: メタンと酸素のそれぞれにボイルの法則が成立する。 同温同体積 : 圧力比は物質量比に等しい。 ●センサー ●温度一定より, ボイル の法則 piVi=P2V2 ●全圧=分圧の和 ●同一容器内の気体の圧 力比は物質量比に等し い。 →反応による変化量を 圧力で示す。 重要 (1) C 解法 (1) (2) 気体についてボイルの法則が成立する。 混合 後の各気体の分圧を PCH4, Po2 とすると, 混合気体の体積は 6.0Lなので, (2 CH4 : 3.0×10 Pa×2.0L=PcH.〔Pa〕×6.0L PcH=1.0×105 Pa O2 :6.0×10 Pa×4.0L=po〔Pa〕×6.0L Po2=4.0×10 Pa 全圧は,1.0×105 Pa+4.0×10°Pa=5.0×10 Pa (3) 反応前後の物質の量的関係を分圧で考える。 08. CH4 +202 CO2 +2H2O (s) 反応前 〔Pa〕 1.0×105 4.0×100005 変化量〔Pa〕 -1.0×10 -2.0×105 反応後 〔Pa〕 0 2.0×105 1.0×105(無視) 反応後の全圧は、2.0×10 Pa+1.0×105 Pa=3.0×10 Pa 解答 (1)1.0×10 Pa (2)5.0×10 Pa (3)3.0×105 Pa [mL〕| | ル・シャルルの法則 重要

回答募集中 回答数: 0
物理 高校生

(1)は自力でやって見たんですけど(2.3)でつまづいてしまいました。ワーク見てもさっぱりですよろしくお願い致します🙏

次の文を読み、問い(問1~3)の答えとして最も適当なものを、それぞれの解 群から一つずつ選べ。 [解答番号 11 ~ 13 [] 図のように, なめらかに動く軽いピストンのついた。 断面積 0.030m²の円筒 容器がある。 円筒容器の底には温度調節器がついており、 円筒容器内に熱を与 えることができる。 ただし, 円筒容器の内と外との間で熱のやりとりはないも のとする。 この容器内に、 温度 0℃, 圧力 1.0×10 Paの理想気体 0.50mol を封じ たところ、 体積は1.13×10-2m² であった。 いま。 この気体の圧力を一定に保ちながら, 温度調節器によって, 気体に30 OJの熱量を与えたところ、 気体の温度は上昇し, ピストンが 0.040m移動した。 (m²) ① 40 ② 80 ③ 120 180 ⑤ 300 (Pa) (m) W = 5 問1 気体が外部にした仕事[J]はいくらか。 + W = PAV W=PAV 200 ⑥ 12102 [J] =120 ① 40 ② 80 ③ 120 ④ 180 (5) 200 ⑥ 300 10×10×0.0310×0.040 問2 気体の内部エネルギーの増加[J]はいくらか。 12 円筒容器 ピストン 温度調節器 問3 気体の温度の上昇 [℃]はいくらか。ただし、 気体の内部エネルギーの式を 用いてよい。 その際、 R-8.3J/mol・K を使うこと。 13 [C] [℃] ① 10 ② 15 ③ 21 ④ 25 ⑤ 29 ⑥ 33

回答募集中 回答数: 0