学年

教科

質問の種類

物理 高校生

41の(3)についてです。 答えが【V0tsinθ-1/2gt】になるそうなのですが、1/2とはどこから出てきたのでしょうか? 解答解説は公式[ X=V0t-1/2at^2]に当てはめたから1/2が出てきているのですが、この公式の意味的に1/2って変位=平均速度×時間よ... 続きを読む

\m8.0 [知識 物理 41. 斜方投射 水平面上の点から, 水平との なす角が0の向きに小球を投げ上げた。 初速度 の大きさをV,投げ上げた位置を原点とし、水 平右向きにx軸, 鉛直上向きにy軸をとる。 投 げ上げた時刻をt=0 とし, 重力加速度の大き さをgとする。次の各問に答えよ。 y V (x1,yi) (E) Vo ti: 小 (x2,y2) (1) 初速度のx 成分 Vx, y 成分 Vy をそれぞれ 0 Vx x 求めよ。 (2) 時刻 t における速度の x 成分 vx, y 成分vy を, Vo, 0, g, t を用いてそれぞれ表せ。 (3) 時刻 t における小球の位置を示す座標 (x, y) を, Vo, 0, g, tを用いて表せ。 (4) 最高点に達する時刻と, 最高点の位置を示す座標 (x, y) を, Vo, 0, g を用いて それぞれ表せ。 (8) (5) 小球が再び地面に達する時刻と, 地面に落下した地点の位置を示す座標 (x2,y2) を,Vo, 0,g を用いてそれぞれ表せ。 ヒント (1) 三角比を用いて, 小球の速度を分解する。 (4) 最高点では速度の鉛直方向の成分が 0 となる。 (5) 再び地面に達したとき, 高さ (y座標) が0である。 例題 7 88

解決済み 回答数: 1
物理 高校生

(1)は自力でやって見たんですけど(2.3)でつまづいてしまいました。ワーク見てもさっぱりですよろしくお願い致します🙏

次の文を読み、問い(問1~3)の答えとして最も適当なものを、それぞれの解 群から一つずつ選べ。 [解答番号 11 ~ 13 [] 図のように, なめらかに動く軽いピストンのついた。 断面積 0.030m²の円筒 容器がある。 円筒容器の底には温度調節器がついており、 円筒容器内に熱を与 えることができる。 ただし, 円筒容器の内と外との間で熱のやりとりはないも のとする。 この容器内に、 温度 0℃, 圧力 1.0×10 Paの理想気体 0.50mol を封じ たところ、 体積は1.13×10-2m² であった。 いま。 この気体の圧力を一定に保ちながら, 温度調節器によって, 気体に30 OJの熱量を与えたところ、 気体の温度は上昇し, ピストンが 0.040m移動した。 (m²) ① 40 ② 80 ③ 120 180 ⑤ 300 (Pa) (m) W = 5 問1 気体が外部にした仕事[J]はいくらか。 + W = PAV W=PAV 200 ⑥ 12102 [J] =120 ① 40 ② 80 ③ 120 ④ 180 (5) 200 ⑥ 300 10×10×0.0310×0.040 問2 気体の内部エネルギーの増加[J]はいくらか。 12 円筒容器 ピストン 温度調節器 問3 気体の温度の上昇 [℃]はいくらか。ただし、 気体の内部エネルギーの式を 用いてよい。 その際、 R-8.3J/mol・K を使うこと。 13 [C] [℃] ① 10 ② 15 ③ 21 ④ 25 ⑤ 29 ⑥ 33

回答募集中 回答数: 0
物理 高校生

⑶ 時間を求めるために、周期を使うことなんて思いつきません。答えを見ても、イマイチ理解できてないです。 他に解き方ってないんですか?💦

必解 52. 2本のばねによる単振動〉 A B mmm mmm 0 図のように, なめらかな水平面上に質量mの物体Pが同 じばね定数をもった2つのばね A, B とばねが自然の長さ にある状態でつながっている。 水平面上右向きにx軸をとり, このときの物体Pの位置をx座標の原点とする。 物体PをばねAのほうへ原点Oよりαだ けずらしてからはなす。 このとき物体Pは単振動する。 単振動は等速円運動のx軸上への正 射影の運動であるといえる。 時刻 t=0 において, 物体Pはちょうどx座標の原点Oを正の 向きに向かって通過した。 ばねの質量はないものとして. 次の問いに答えよ。 (1) 時刻 t における物体Pの位置xおよび速度vを,等速円運動の角速度 を用いて表せ。 (2)時刻 t において物体Pが位置xにあるときの加速度αを, wとxを用いて表せ。また,2 つのばねAとBから受ける力Fを, kとx を用いて表せ。 (3) 物体Pがx=α に達してから, 初めて原点0を通過するまでの時間 to と, 初めて x=123 を通過するまでの時間を,kmを用いて表せ。 (4) 物体Pの運動エネルギーKの最大値とそのときの位置, およびばねの弾性力による物体 Pの位置エネルギーUの最大値とそのときの位置を表せ。 ただし, ω やTを用いないこと (5) 物体Pが単振動しているときの速度と位置xの関係を求め, vを縦軸に, xを横軸にと ってグラフに示せ。 このとき座標軸との交点を, a, kおよびm を用いて表せ。 また, 物 体Pが時間とともに図上をたどる向きを矢印で表せ。 [ 香川大改〕

未解決 回答数: 1