学年

教科

質問の種類

物理 高校生

高校生物理基礎の問題です 赤枠で囲った問題の解説にある 三つの 0 はそれぞれ何エネルギーが 0 であることを示しているのか教えてください。

第5章■仕事と力学的エネルギ リード] D 110 保存力以外の力の仕事 図のように床と斜面 がつながれている。 床のAB間はあらいが、他はなめら かである。 床の一部分にばね定数kのばねをつけ, 一端 に質量mの物体を押しあてて、 ばねを縮めた。 AB間 の物体と床との間の動摩擦係数をμ',距離をS, 重力加速度の大きさをgとする。 (1) ばねを解放したとき, 物体が点Aに達する直前の速さを求めよ。 Ammun B (2) 物体は点Bを通過後,斜面を上り, 最高点Cに達した。 Cの床からの高さんを求めよ。 もどってきた物体がばねを縮めた。ばねの最大の縮みxを求めよ。 →例題 24,113 応用問題 112 仕事と運動エネルギー■ 質量2.0kgの物体が, なめらかな水平面のx軸上の原点Oを速さ3.0m/sで通過 した瞬間から,速度の方向を含む鉛直面内で一定の角0だ け上向きに力F [N] を加えた。 力Fの大きさは移動ととも に右のグラフのように変化する。 また, cos0=0.80 とす る。 111 力学的エネルギーの保存 ばね定数k [N/m] の軽いつる 巻きばねの一端を固定し、他端に質量m[kg] のおもりをつるして, おもりを下から手で持った台で, ばねが自然の長さになるように支 える。 重力加速度の大きさをg[m/s'] とする。 (1) 台をゆっくりおろしていくとき, x [m] だけ下がった位置で台 がおもりを支える力の大きさ F [N] を求めよ。 (2) おもりが台から離れるときのばねの伸びx] [m] を求めよ。 つりあい (3) はじめの状態で台を急に取り去った場合, 最下点でのばねの伸びx2 [m] を求めよ。 (4) おもりの最下点について, x1 と x2 の差が生じた理由を述べよ。 ➡115 (1) 力Fが物体にした仕事Wは何Jか。 (2) 物体が x=10m の点を通過する瞬間の速さは何m/s か。 0 F[N] 8.0 2.0 0 mmmmmm 10m 自然の長さ CQ 10 lllllllllll h ■■ ■■ x (m) -102 ヒント 112 カFの分力 Fcose のみが仕事をする。 (F-x 図の面積) × cos0が,Fのした仕事となる。 てい mi と 放した の 化を Imgs 111 112 ここがポイント 軽いつる巻きばねなのでばね自身の重さは無視できる。 これはばねを縦につるしても、おもりを取 りつけなければばねは伸びないということである。 (1) おもりを支えながら台をおろしていく場合、 おもりは台が上向きに支える力によって仕事をされ、 力学的エネルギーは保存されない。 (1) 台をゆっくりおろしているので, おもりは等速運 動をしている。 よって, おもりにはたらく力はつ りあっている (おもりにはたらく力の合力は0であ る) から,上向きを正として, aより力のつり あいの式はkx+F-mg=0 ゆえに F=mg-kx [N] (2) 台がおもりを支える力が0になるとおもりは台か ら離れる。 (1) の結果において, x=xのとき F0 となるから (3) 台を急に取り去った場合、 おもりには保存力である重力とばねの弾性力のみがはたらくので、力学 的エネルギーは保存される。 0-mg-kx₁ よって mg - [m] (3) 自然の長さの位置を基準水平面とする(図5)。 はじ めの位置と最下点での力学的エネルギー保存則より 0+0+0=0-mgx2+ 100 0=-—-kx (x₂-2mg) 0皿 2mg k 0より [m] (4) 台をゆっくりおろしていく場合は、おもりを支え る力によって負の仕事をされ力学的エネルギーが 減少するが, 台を急に取り去った場合は力学的エ ネルギーが保存されるため。 -xcos 0 自然の 長さ 2.0 第5章■仕事と力学的エネルギー ばねの 0 はじめ 水平面 図b mg 解答 (1) 力Fが物体にした仕事を W [J] とす F(N) 4 ると, F-x 図の面積より 18.0 W= (2.0+8.0)×10 2 cos0=0.80 であるから W=40J 10 (2) x=10mでの物体の速さを [m/s] とすると, 物体の運動エネルギー の変化は、物体にされた仕事に等しいので「1/12m-1/2m -mv² =W₁ よ り 1/23×2.0 × -/1/3×2.0×3.0°=40 Cheeeeeeeeee よってv=7.0m/s 最下点 ここがポイント 力の大きさが変化するので 「W=Fxcose」 の式にFの値を代入することはできない。 力Fの分力 Fcos0 のみが仕事をするので, (F-x 図の面積) × cos0 が F のした仕事となる。 また、物体の運動エネルギーの変化 = 物体にされた仕事の関係が成りたつ。 51 「ゆっくり」 とは 「力のつ りあいを保ちながら」という ことである。 2 (2)の結果と比べると2 信伸びていることがわかる。 したがって, おもりはつりあ いの位置を中心に はじめの 位置を最上点, ばねの伸び の位置を最下点として振動す る。 @__mv²+W= 2mo (はじめ+仕事終わり) を用いてもよい。

解決済み 回答数: 1
物理 高校生

至急です🙏🏻🥺 答えは上から、ウ・オ・ク・サです。 なぜこの答えになるのか教えて頂きたいです。

問題1. 【思考・判断・表現】 次の問いに答えよ。 (1) 粗い水平面上に物体をのせ、手で瞬間的に右向きに 力をかけたところ、手を離れた物体は減速しながら ある距離をすべって静止した (右図)。 物体が滑って いるとき、 物体にはたらいている力について正しく 述べているものを次から一つ選べ。 ア. 右向きにはたらく力の大きさはだんだん小さくなる。 イ. 右向きにはたらく力の大きさは一定である。 ウ.右向きに力ははたらいていない。 運動の向き (2) ボールを真上に投げ上げた。 手を離れたボールにはたらいている力の説明として最 も適切なものを次から一つ選べ。水平な エ. ボールが上昇するとき、 ボールには上向きに力がはたらく。 その力はだんだ ん小さくなり、 最高点で重力とつり合う。 オ. ボールには常に一定の重力だけがはたらく。 カ.ボールが上昇するときは上向きの力の大きさが下向きの力の大きさより大き く、下降するときは下向きの力の大きさが上向きの力の大きさより大きい。 (3) 無重力の宇宙空間で、観測者に対して静止している質量20kgの物体Aと質量10 kg の物体Bに、同じ大きさの力を同じ向きに同じ時間作用させた。観測者から見たA、 Bの運動の記述として最も適切なものを次から一つ選べ。 キ. Aの方が質量が大きいので、 Aの方が速くなる。 ク.Bの方が質量が小さいので、 Bの方が速くなる。 ケ.無重力空間では質量の違いは影響しないので、同じ速さで運動する。速さ 4) 摩擦のある粗い水平面上で物体に一定の力を加え、 物体を等速度運動させた。この とき、物体にはたらく合力について最も適切な記述を次から一つ選べ。 コ. 合力の向きは運動の向きである。 . 合力は0である。 シ.合力の向きは運動の向きと逆向きである。

解決済み 回答数: 1
物理 高校生

下線部でVではなくV'である理由が分かりません。 問題文に「始めにフラスコ内にあった空気の質量の何倍か」とあるのでVになるのではないんですか? 教えてください

発展例題 14 ボイル・シャルルの法則 132 発展問題 Labor 口の開いたフラスコが,気温 t〔℃〕, 圧力か [Pa]の大気中に放置されている。このフ S8.69%01×0,1 1969 ラスコをt〔℃〕までゆっくり温めた。 次の各問に答えよ。 (1) このとき, フラスコ内の空気の圧力はいくらか。 Com Int ANDA (2) 温度がt〔℃〕から 〔℃〕になるまでに, フラスコの外へ逃げた空気の質量は, はじ めにフラスコ内にあった空気の質量の何倍か。 MORTU 273+t__(__) (2) これから, V' =VX 273+t₁ フラスコの外に逃げた空気の体積 ⊿V は, t₂-t₁ 22 Cest シャルルの法則)が成り立つ。 フラスコの外へ逃 げた空気も含めて、この法則を用いて式を立てる。V=-=X273+ax)(最 解説 (1) フラスコは口が開いており, 大気に通じているので, フラスコ内の空気の圧 力は大気圧に等しい。 したがって [Pa (2) フラスコの容積をV[m²] とし, 温める前の t〔°C〕, pi〔P〕,V[m²]のフラスコ内の空気が, 温めた後, t〔℃〕 [P] V'[m²] になったと する。 ボイル・シャルルの法則の式を立てる DIV P₁V' と. 指針一定質量の気体では、圧力が,体積 DV =一定の関係 (ボイル・ T V, 温度 T の間に, 050 温める前にフラスコ内にあった空気の質量を m, 外に逃げた空気の質量を⊿m とすると, tom L Am AV DA が成り立ち, V' J3 (²2\m) た (1) 273+t₁ 倍(S) 273+t₂ 273+t₂ m = VX 4m m 3VX = t₂-t₁ 273+t2 TEXT

解決済み 回答数: 1