学年

教科

質問の種類

物理 高校生

この問題に関して質問です。 (ハ)の解説で2行目の式から3行目の式にどうすれば変換できまか? 教えて頂けると助かります

3 重力波はアインシュタインの一般相対性理論により約100年前に予言された, 空間の伸び縮 みが横波として伝わる現象である。 2016年に重力波の初めての直接検出が報告され,現在では世 界的に観測が行われている。 その基本的な原理はマイケルソン干渉計によるものである。 図のようなレーザー光源を用いた装置で, 光の干渉を利用して微小な距離変化を測定する。 装 置は、真空中にあるとする。 レーザー光源から出た光の進行方向をx軸の正方向に取る。 レーザー 光源は軸上の<0の位置にある。原点Oに軸に対して45°傾けて設置された厚さがじゅう ぶんに薄いビームスプリッターにより、レーザー光は半分透過し、残りが反射する。 透過した光 はそのままぁ軸上を進み, z=L+Xの位置にある鏡1で全反射する。 一方,原点で反射した 光は軸に垂直な方向に進行する。 この進行方向を軸の正方向に取る。 y軸上を進行した光は、 =L+Yにある鏡2で全反射する。 鏡1と鏡2で反射した光は再び原点0で半分に分けられ、 部がy軸上の負の位置にある点Dの光検出器に入射する。 これにより, AOBOD という経路の光 と, AOCOD という経路の光が干渉し、 検出器で観測される。 レーザー光の波長を入とする。 簡 単のため、 透過や反射による位相の変化はないものとする。 鏡の動きは光速と比較してじゅうぶ んに遅く、 入射する光と反射する光の波長は変化しないとする。 以下の問に答えよ。 (イ) 点Dで光が強め合う条件を,L,X,Y, 入および整数mより必要なものを用いて表せ。 (ロ) 鏡2をY = 0 の位置で固定したまま鏡1を X = 0 の位置から軸上を正の向きに距離 α だけ動かした。 鏡1を動かしている間に点Dで光の干渉を観測したところ、 弱め合いが N回 観測され、移動後は,ちょうど強め合っていた。 ① を L, N, 入より必要なものを用いて表せ。 重力波によって空間の伸び縮みが生じると, x,y 軸方向の光路が時間に依存して変化する。 そ こで鏡1と2が微小な単振動をするモデルを考え, X(t) = Acos (wt), Y (t)= Acos (wt+Φ) と表す。 ただし, A > 0, w ①,0≦2とする。 ここでは重力波のやってくる方向に よって決まる定数である。 (ハ) 光路差が時間によらず0となるとき, 重力波は検出できない。 このときの中の値を答えよ。 (-) 光路差の大きさをf(Φ) sinwt + t + 2/2) | の形に表すと、f(Φ) = K sin0 となる。 ただし, K はによらない正の定数である。 K と 0 を、 それぞれL, 入, A, Φより必要なものを用いて表せ。 (ホ) さまざまなの値に対するf(Φ) の最大値をL,入, A より必要なものを用いて表せ。 (へ) A = 1 x 10-21L, X = 1 × 10-6mのとき, 問 (ホ)の光路差の最大値をレーザー光の波長 入 の 4 x 10-10倍にするには, Lを何km にする必要があるか。 有効数字1桁で答えよ。 実際の重力波干渉計では、図のような装置にさらに鏡を追加してレーザー光を往復させ、 実効 的な光路長を長くする。そのため、実際の装置の大きさは,問(へ)のLの値より小さい。 201 w710-al 532 9 X 3275 6 IT レーザー光源 200 #31 37 エイ 37 L+Y [D 鏡 2 ビームスプリッター 鏡1 = Bª L+X 光検出器 Acasat sma -A sinut eard + Ato sulle Ksmo smot cov? + covul sm f v/ - In 4. JA 27-

解決済み 回答数: 1
物理 高校生

問3の問題で、右向きに速度uを置いたので、設問の設定時にはuが負の速度として出てくると思ったのですが正でした。 なぜでしょうか? 教えてください🙇‍♀️

図のように、滑らかな水平面上に,質量Mの小物体Bが置かれ, その右方には, ばね定数kの軽い ばねが取り付けられた質量mの小球Cが置かれている。 いま, Bの左方から質量mの小球Aが速さvo でBに向かって運動し衝突した。 A, B, C の運動はすべて同一直線上で行われ, 空気の抵抗は無視で きる。また, A,B間の反発係数はe として,次の問に答えよ。 ただし,速度, 力積等のベクトル量は, 図の右向きを正とする。 A 10 (5 m-eM m+M 1 mvo ⑤ 衝突直後のA,Bの速度をそれぞれ”, Vとする。 これらを求めよ。 1 2 (5 -Vo m eM m+M m(m-eM) m+M V 5) V. ③③ -mvo -Vo 6 3 問2 衝突の瞬間, AがBから受ける力積を求めよ。 mM m+M (6 20 mM k(m + M) ハイレベル物理 前半 第4講 チェックテスト DV√TH OV√ m ① V. ② V. k m+M em - M m+M 6 (③3) -Vo em m+ M M V k -Vo (4) 6 V M(em-M) m+M -V (7) V (4 m m+M B -Vo M (1+e) M m+M -Vo 問3 Bがばねと接触している際, ばねが最も短くなるときのBの速度を求めよ。 M 10 2 V m+M m m+M fetal. 問4 問3のとき, ばねの自然長からの縮みはいくらか。 -Vo mM √k(m-M) 4 3 V m+M V k -V 3 (1+e)mM (m+M)2 -Vo mM m+M V (1+e) mM m+M 8 5 4 V ⑦V ooooo -V0 (1+e) m m+M Vo (8) -Vo (1-e) mM (m + M)² m-M k m √k (m + M) V C (1+e)mM m+M ⑧V m 4 Vo M √k(m + M)

解決済み 回答数: 1
物理 高校生

問3で私の答えが5番になったのですが答えは2で、どこが違ってきているか分かりません。

- Cosy) 9 0 分 直後での運動量保 **第18問 次の文章を読み、下の問い (問1~3)に答えよ。 (配点 12 【10分 図1のように水平な床の上に半頂角0の円錐をその軸が鉛直になるように固定 した。円錐の頂点から質量mの小球が長さの軽い糸でつるされており、円錐 と接しながら角速度で等速円運動をしている。 糸は伸び縮みせず。円錐面はなめ らかである。ただし、重力加速度の大きさをgとする。 とする 0 問 等速円運動の周期はいくらか。 正しいものを、次の①~⑥のうちから一 つ選べ。 T= 1 会 20 mgsin+lucos²8) O' m (gcose + lu'sin¹0) 2x W w² (r-mlsing) = gross and rw²³-mew singsing cos 問2 小球が糸から受ける張力の大きさSはいくらか。 正しいものを次の①~8 のうちから一つ選べ。 S 2 17 W 2x 2 m (gsinf-lo cos³0) mr W=gsind cost + me ursing 4mgcost-la'sin³0) mairt (gos + sin() W² = [sing wire w f =mrw² (0) (050)-1) b = 2,415 M Tsint F Tco₂0 mg J 20 I (groso + lu² sino) cost = g U₁² 11 groso sino 問3 をいろいろ変えて小球を等速円運動させるとき、小球にはたらく垂直抗力 の大きさは図2のように変化した。 図2のc)はいくらか。 正しいものを、下 の①⑤のうちから一つ選べ。 03 m = mg sing w²=lgsing 〒53 0 mr 4 masin mg (050+ lw²siño) = [ 9 V Isin __w² T mut sing gcos T mg sine + N mg coso 2 QF mg 1030 Im CO₂O mg Burg mycose + ml wsing T T my co me sinfu = ((stein² ou ² ) 9 Icos my cosp 図2 Ex mg = m + cos w² g r como e COD w² mgsing N mesingumasing macoso I + me sinow sint ex=lsing gsin 1 Tsing BSAJN + == T-mg cose my 00 Aug Tcose + Nsin0 = mg) Ttanf Too 30 My he ca = 3 mrw² mg _ru tand: g w² wid. ₂N

解決済み 回答数: 1
物理 高校生

下の写真のマーカーのところがなぜそうなるのかが分かりません

2 気体分子の運動 気体の圧力や温度を変えたとき,気体分子の熱運動はどのように変化しているのだ ろうか。この節では,気体全体の状態と、分子の運動との関係について理解しよう。 A 分子運動と圧力 気体の圧力は気体全体の状態を示す巨視的な量である。 その巨視的な 量が,それぞれの気体分子の質量や速度などの微視的な量とどのような 関係になっているのかを考えてみよう。 1辺の長さL〔m〕,体積V[m²](=L°)の立方体の容器に,質量 m[kg] の分子N個からなる理想気体を入れる。図16ⓐ のように x,y,z軸を とり,x軸に垂直な壁Sが受ける圧力を考える。 分子は,他の分子とは 衝突せず, 容器の壁に衝突するまでは等速直線運動をしていると仮定す る。また,分子と壁との衝突は弾性衝突とし,衝突の前後で分子の速度 RI) →p.151 の大きさは変わらないとする。 2 ①1回の衝突で壁Sが分子から受ける力積 壁Sに衝突する直前の分 子の速度をv = (vx, vy, vz) とする (同図⑥)。 衝突前後では分子の速度 の大きさは変わらず,壁Sに垂直な成分のみ向きが変わるので,衝突 直後の分子の速度はv=Ux, vy, vz) となる。 よって, 壁Sとの衝突 による分子の運動量の変化,すなわち, 分子が壁Sから受ける力積は mu-mv=(-2mvx, 0, 0) → p.143 (98) 式 となる (同図⑤)。 作用反作用の法則より, 壁S は分子から反対向きの力積を受けるので,その 大きさは2mvx[N・s] で, 壁と垂直な向き(x軸の正の向き)である。 (14) Op.143 mv - mv = Ft (98) 5 10 15 20

解決済み 回答数: 1