学年

教科

質問の種類

物理 高校生

この問題の4番について質問です。振動数はおもりの重さによっては変わらないとあるのですが,なぜですか? おもりの数が多いほど,弦が張ることになるので,音が高くなると思ってました。(ギターみたいな感じで)

(3) Hz である。 また, a=35cm をそのままにし, おもりを4倍に増やし たとき, 弦は共振しなくなった。 弦を再び共振させるには,Bを 少なくとも (4) cm 右に移動しなければならない。 64 弦の共振 全体の長さが120cm 質量 1.8g の弦の右端に滑車を通して質量 6 kgのおもりをつるし,振動源Sによって弦を振動させる。 この弦は, コマBを動かすことにより任意の一点を固定できる。 弦の張力はどこ も同じで,振動する AB間の距離をα, 重力加速度を10m/s2とする。 問1 コマBを適当に動かすと, a= 30cmで弦が共振する。 さらにB を右に移動していくと, a=35cm で再び弦が共振する。 したがっ て,弦を伝わる横波の波長は (1) cmであり,このときのAB 間の腹の数は (2) 1個である。 またSの振動数は (1) 振動数 fと波の速さが変わっていないの で、波長も変わっていない。 Aが節で今こ とに節があるから, Aから30cmの範囲の定 常波の様子は同じこと。 そこで,Bを右へ だけ移せば再び共振する。よって .. 1 = 10 cm 5cm ごとに腹が1つずつあるから 35÷5=7個 B =35-30 2 2 2 (2) 2 (3)密度は p = 1.8×10-3 120×10-2 B< [kg] と [m〕 を - = 1.5×10-3 kg/m 用いること v = mg P 6 × 10 V1.5×10-3=200m/s 2 もとの弦と同じ材質 同じ長さで, 直径が2倍の弦に張り替え て, αを30cmにし, おもりの質量を6kgに戻す。 このとき弦は 共振し, AB間の腹の数は (5) 個となる。 また, AB間の腹の 数を3個とするには, Sの振動数を (6) 200 v=fa より - f === 10 × 10-2 = 2000Hz (4) はじめはVP Img =fx.......① Hz とすればよい。 mを4倍にしたときの波長を とすると,fは< ①を見て,m を4 倍にすると A B 変わっていないから V p 4mg =fv.......② 2倍になると即断 したい。 S 中にス ② より 2= =24=21=20cm ① 1 (上智大) ・B' Level (1)~(4)★ (5),(6)★ Point & Hint 隔は (1) (2) 弦が共振するのは, 両端が節となる定常波ができるとき。 節と節の間 2 だから、弦の長さが1の整数倍に等しいとき,共振が起こる。 弦の長さが4=10cmの整数倍のとき共振するから、35cmより大き い次の値としては 40cm。よって,5cm 動かせばよい。 A 2 (5)直径を2倍にすると, 断面積が4倍になる から、密度も4倍になる。 波長を入とす ①からを4倍にす ③れば入は1/2倍と即 mg=fie ......③ 断できる。 ると V 40 この問題のような状況では,Sはおもりの重力 mg に より1=4 ∴ A2 = =5cm 2 12= cm ごとにあるから 30÷2=12個 は v [m/s] はv= (3) 弦の張力をS〔N〕, 線密度をp 〔kg/m〕 とすると, 弦を伝わる横波の速さ 等しい。

解決済み 回答数: 1
物理 高校生

①、②まではわかるんですけど答えがなぜそうなるのかわからないです。

60 60 Chapter 2 力のつり合い 問2-3 のおもりを ている。このときの2本の糸の張力の大きさをそれぞれ求めよ。 ただし、 速度の大きさを とする。 解きかた この場合は、 ませんね。 問2-1 のように単純に力のつり合いの式を立てることが そこで、力を鉛直方向と水平方向に分解してつり合いの式を立てるわけです 問2-3 糸 1 45゜ 45° 2-4 力の解 61 糸2 22 まずおもりにはたらく力を図示するという手順は同じです。 ページ真ん中の図のようになります。 そして、張力を鉛直方向と水平方向に分解して、そのそれぞれについて 力のつり合いの式を立てると |求める張力の大きさをそれぞれ T1 T2 とすると, おもりにはたらく力はも 物体にはたらく力を分解すると・・・ Tsin 45° T2sin 45° T2 T₁ ここを理解したら どんぐりを 食べようっと 鉛直方向: T sin45°+T2 sin45°=mg ...... ① 回 水平方向: T cos45°=T2 cos45° ......② = √2 sin45°cos45 ですから,①,②式を解いて mg T₁ = T₂ =√2 このように、力のつり合いを考えるうえで,力を分解する方法はよく使われます。 この例のように,鉛直と水平に分解するのがいちばんオーソドックスですが 他の分解のしかたでも問題は解けます。 どのように分解すれば、いちばんきれいに解けるかを意識するようにしましょう。 お 45° Ticos 45° よって ・ 45° T2 cos 45° mg 力の分解成分 F sin 0 角をなす力Fの 水平 鉛直成分は Fcos 0, Fsin 0に なるのじゃ B

解決済み 回答数: 1
物理 高校生

赤線のところがわからないので教えてほしいです

と を 60 Chapter 2 力のつり合い 〈問2-3> 右ページ上図のように、2本の糸がそれぞれ角度45°で質量mのおもりを吊るし ている。このときの2本の糸の張力の大きさをそれぞれ求めよ。 ただし、 速度の大きさをgとする。 <解きかた この場合は, ませんね。 〈問2-1のように単純に力のつり合いの式を立てることがで 問2-3 糸 1 まずおもりにはたらく力を図示するという手順は同じです。 そこで力を鉛直方向と水平方向に分解してつり合いの式を立てるわけです 45° 45° ページ真ん中の図のようになります。 そして、張力を鉛直方向と水平方向に分解して、そのそれぞれについて 力のつり合いの式を立てると |求める張力の大きさをそれぞれT1 T2 とすると, おもりにはたらく力は右 物体にはたらく力を分解すると・・・ T₁sin 45° T2sin 45° T2 T 鉛直方向: T sin45° + T2 sin45° = mg ...... D 水平方向: T cos45°=Tzcos45° ・・・・・・② | sin45°=cos45°=- ですから、①②式を解いて v2 mg T₁ = T₂ = √2 ・・・答 このように、力のつり合いを考えるうえで、力を分解する方法はよく使われます。 この例のように、鉛直と水平に分解するのがいちばんオーソドックスですが, 他の分解のしかたでも問題は解けます。 どのように分解すれば,いちばんきれいに解けるかを意識するようにしましょう。 45° 45° さ Ticos 45° T2cos 45° 角をなす力Fの 水平 鉛直成分は Fcos 0, Fsin0に なるのじゃ 糸2 2-4 の分解 61 ここを理解したら どんぐりを 食べようっと 02 mgの分解成分 F F sin 0 0 F cos 0 000

未解決 回答数: 0