学年

教科

質問の種類

物理 高校生

電界、電位、コンデンサーの質問です。 この問題がわかりません。 教えてください。

電界・電位・コンデンサー 16. 図のように,大きさが等しく符号が反対の電 荷+α, -g をそれぞれ点A(0, 4),B(0, -d) に置いた。 静電気力に関するクーロンの法則の 比例定数をkとする。 (1) 原点0での電界 (電場)の強さはいくらか。 (2) x軸上では,電界は成分のみとなる。 点C(2d, 0) における電界の強さは, 原点 0 における強さの何倍か。 17. 図のように, 真空中で原点に電荷Q の粒子 A が 固定されている。 位置 (4a, 3a) に電荷gの粒子 B をもってきたとき, 粒子Bが粒子Aのつくる電界 (電場) から受ける静電気力の大きさはアである。 また, 粒子 B を位置 (4α, 0) まで移動させたとき, 粒子 B にはたらく静電気力のなした仕事はイ である。 ここで,ko は真空中でのクーロンの法則 の比例定数である。 (3) (6) or Ⓒod (8) OS (2) 点における電界の大きさはいくらか。 oa y↑ +qA (0, d) 2 N/C -q B(0, -d) 0 a 3. 電磁気に関する文章を読み、下の問いの答えを,それぞれの解答群のうちから1つ ずつ選べ。 真空中で, 図のような縦0.6m, 横 0.8mの長方形 abcd の各頂点に電荷を置く。 a 点, c点の電荷はそれ ぞれ+4.0×10-°C で, b点の電荷は-3.0×10-°C, d点の電荷は5.0×10-°Cである。 長方形の各辺の 中点をそれぞれ p,q, r, s とし, 中心点を0とする。 クーロンの法則の比例定数は 9.0×10°N・m²/C2 とす る。 (1) 点における電界 (電場) はどの方向を向いているか。 ob ② op 5 oc 4 oq p Al C(2d, 0) x (4a, 3a) (4a, 0) x 0 S q r C

回答募集中 回答数: 0
物理 高校生

緑のマーカーで引いているのがテストで間違えたところですべて分かりやすく解き方と解説お願いします🙇‍♀️ 今日中に答えてくれると嬉しいです!!! 宜しくお願いします!!!

p²-v₁² = ( 4 【選択肢】 (ア) votax いものや、不正をした (4) 3.72x106-2.5x105 37.2×105-2.5×101 12.5 1年物理基礎 1 文字,ox,a, を使って、以下の加速度運動の3つの公式をすべて書きたい。 次の文中の (①)~( に当てはまる文字式を,以下の選択肢 (ア) (カ)のうちから1つずつ選び記号で答えよ。 1つめの公式は、セー (① (3) となる。 (2) 5.1+3.56 =8,66÷8.7 右向きに 2.0 いないものは受け付 34.73.47×10 3.5 図は ラフの接線である。 次の各問に答えよ。 Tox soubun in 16.0-40 4,0-2,0 (イ) Dotat (15) vot+at² (I) vo+at² (オ) 2at (カ) 2ax 以下の例にならって、有効数字の桁数に注意して、次の(1)~(5)の測定値を計算せよ。 足し算引き算) の有効数字】 計算結果を、測定値の末位が最も高い数字に合わせて四捨五入します (991) 23.45+5.6=29.05 29.1 ko 5.0 9.0 6.0m15 で,2つめの公式は、y= (1) 2.6+1.6 (3) 8.5+4.5 = 13.0 (4) 4.20.6 = 3.6 42 3 以下の例にならって、有効数字の桁数に注意して,次の(1)~(5)の測定値を計算せよ。 (1) 3.2x102+2.5x102 (2) 4.75x 10³ +2.7x 10¹ (3) 5.1×10^-2.4x 10 (5) (6.0×10)×(2.5x102) 5 左向きにも (1) 時刻 20sから4.0s の間の、物体の平均の速度はいくらか。 (2) 時刻 2.0sにおける瞬間の速度はいくらか。 b 12.0 2,0 12,0 想文コンクールに応 。。 = 6.0 から 5.0t….30 (55) (②)で、3つめの公式は、 の表紙をつけて提出 4.75 -20=10+5.00 -5.00-10+20 -5.00=30500y9.0 to bo やか課題考査ⅡI 45 6.0 30 15,00 15×10. x[m]と時刻 [s)との関係を表している。 図中の直線は、 時刻 20sにおけるグ 軸上を運動している物体の位置 4,75 27 31.05 2 x [m) ↑ 16.0 12.0 9.0 (+)31-75×10² 4.0 1.01 0 5枚(1 3.175×100 0.76 314 4 (5) 4.20.76 = 3.4434 Vi Vo+at V1.0.0,50 2,0 1,0410 2.0 品 5 次の各設問に答えよ。 ただし, ベクトル量の答え方に注意せよ。 --+(214-0) (43,910) (1) 一定の速さ5.0m/sで直線上を走るとき, 9.0s間に進む距離は何mか。 9.0-40 32:50 (2) 静水の場合に速さ5.0m/sで進む船が, 速さ 1.0m/sで流れる川を下流から上流に向かって進んでいる。 岸から見た船の速度はいくらか。 (3) 直線上を右向きに速さ1.0m/sで歩いているA君から, 左向きに速さ5.0m/sで走っているB君を見たときの相対速度 10mls を求めよ。 神速度(Vo) -5.0-(+10) Vo = -5.0-1.0 = -6.0% 左向きに 6.0m/s 6.0m² V (4) 直線上を右向きに速さ10m/sで進んでいた物体が、一定の加速度の運動を始めて、 5.0s後に左向きに速さ20m/sと なった。 この間の加速度を求めよ。 Vo Dr 七 ↓ (5) 物体がx軸上を初速度1.0m/s, 一定の加速度 0.50m/s² 2.0s間運動すると、速度はいくらになるか。 符号を付け て答えよ。 12.7 (40問) 「6 図は、 Aは原点 ただし, 1 1 2 3 4 t(s) (1) グ (2) 小 (3) 時 小 の (4) (5)

回答募集中 回答数: 0
物理 高校生

エッセンスに載っているコンデンサー回路の電位による解法は、「直列並列で解けないとき用いる」と書いてあるんですが、あまり使わない方がいい理由があるんですか?

9:38 1 58 必殺技・ ●電位による解法 電位を用いてコンデンサー回路を解く 1 適当に0V をとり、 回路の各部分の電位を調べる。 孤立部分について電気量保存の式を立てる。 N all 4G 45 [解説] 複雑な回路になると並列や直列に分解できなくなる。どん な場合にも対処できる方法の話をしよう。 まずはその準備から。 容量Cのコンデンサーがある。 極 板Aの電位をx (V), B の電位をy [V] とすると,A上に ある電気量は符号を含めてQ=C(x-y) と表される。 なぜなら,xyならA上には正の電荷があるはずで電位 差はV=x-yだから Q=CV=C(x-y) 反対に、 x<yならA上には負の電 荷があるはずで、電位差はV=y-xだから QA = CV=-C(y-x)=(x-y) 結局, 上の式は x,yの大小関係によらず成り立つ (x=yのときのQ=0 を含め て)。 x-yでは扱いにくいから, (考えている極板の電位) (向かい合った極板の電 位), もっと簡単に, (自分) - (相手) と覚えてしまおう。 ある極板上の電荷=Cx (自分一相手) EX 1 10μFのコンデンサーの電圧Vはいく 10μF らか。 また. 20μFのコンデンサーの左側 ト 極板の電気量Qはいくらか。 100 v/ 1°F 電位 この式は符号を含めて成立しているから, 孤立部分のすべての極板について 和をとれば電気量保存則が用いられる。 電位が求まれば、 コンデンサーのすべて 電位差, 電気量,静電エネルギー・・・が計算できる。 × +120μF 30μF y 40 V

回答募集中 回答数: 0