学年

教科

質問の種類

物理 高校生

この問題のイはなぜ⊿yに1/2がついているのですか?等加速度運動の式だとついていないのが正解のように思えます

次の文章を読んで, れの解答欄に記入せよ。 なお, に適した式を問1、問2では,指示に従って解答を で与えられたものと同じ式を表す。た はすでに だし,以下では,弦が受ける重力は無視できるものとする。 必要であれば、以下の関係式を使 ってもよい。 01 のとき sin0≒0≒ tan 0 7 x 関数y=sin(ax+b) の傾きは xの関数 y=cos (ax+b) の傾きは =-asin(ax+b)(a,b: 定数) Ay Ax sin(a+β)+sin(a-β)=2sinacos β, sin (a+β)-sin(α-β)=2cos a sin β T (1) 図1のように,一定の大きさTの力で水平に張られた線密度(単位長さ当たりの質量)p の十分に長い弦を伝わる横波について考える。 図2のように, 微小時間 At の間に,波が 水平方向に微小な長さ x だけ進むとき, 弦を伝わる波の速さvv=ア と表される。 この間に、波の右端付近では, 長さ x の部分(以下ではこの部分をXとする) が波の進行 とともにわずかに持ち上げられる (変位する)。 微小時間 At の間, X は張力のみを受けて, 運動するとみなせる。 X の鉛直方向の運動を初速度 0, 加速度の大きさαの等加速度運動と 近似すると,Xの重心の変位の大きさ 1/24y , Ata のみを用いて, 1/1/24y=イ]と 表される。さらに, 長さ x の部分 X が受ける力の鉛直成分は,張力 T の鉛直成分 Tyの みであるから,運動方程式より,aは,p, Ax および T, を用いてa=ウと表される。 加えて,弦が水平となす角度が十分小さいとき, Ty=x Ayr と書くことができるので,”は To のみを使ってv= エ と表すことができる。 of T Ay Ax V Ty =acos(ax+b)(a,b: 定数) 図1 4x 4y T T

回答募集中 回答数: 0
物理 高校生

クについてなのですが、なぜ角度を大きくしても波長は変わらないのですか? この答えは②です

キ ク 問5 次の文章中の空欄 に入れる式と語句の組合せとして最 も適当なものを、後の①~⑥のうちから一つ選べ。 6 図6のように、 底面が水平で十分に大きい水槽に水を入れ, 一定の厚さの ガラス板を水槽の底に沈める。ガラス板を沈めていない部分を領域1,ガラ ス板を沈めて浅くした部分を領域2とする。領域1で振動板を水面に触れる ようにして一定の振動数で鉛直方向に振動させたところ,水面波が伝わり, 領域1と領域2の境界面で屈折した。このときの波面の様子を写真に撮って 調べたところ、図7のようになっていた。 領域1を伝わる波の波面と境界面 のなす角度は45°,領域2を伝わる波の波面と境界面のなす角度は20°で あった。このとき,領域1を伝わる波の速さと領域2を伝わる波の速さ 2比は, 102 = キ である。 また, ガラス板の位置を変えて、領 域1を伝わる波の波面と境界面のなす角度を45°より大きくしたとき,領域 2を伝わる波の波長は、図7の場合と比べて ク ガラス板 . 領域2 領域 1 図 6 ZSME 振動板 ② (3) 領域2 ガラス板 キ 波面 : 領域 1 sin 45° sin 20° sin 45° sin 20° sin 45° sin 20° sin 45° sin 70° sin 45°: sin 70° sin 45° sin 70° 図 7 20 Warni ク 大きくなる 変わらない 小さくなる 大きくなる 変わらない 小さくなる MSR

回答募集中 回答数: 0
物理 高校生

黄色でマーカー引いたところがどうして2πx/16となるのか分からないです。教えてください🙇‍♀️

入 =2.0mである。 波の速さをv[m/s」として、 発展例題 30 正弦波の式物理 図のような正弦波が, x=0を波源として, x 軸の正の向きに進行している。 実線の波形から 最初に破線の波形になるまでの時間は, 0.10s 0.100 であった。 実線の状態を時刻 t=0s とする。 (1) 波の伝わる速さ, 周期, 振動数を求めよ。 (2) t=0sにおける波形を式で示せ。 (3) x=0mの媒質の変位y〔m〕 , 時刻t [s] を用いて表せ。 指針 正弦波の波形や, 単振動をする媒質 の変位は,いずれも sinを用いた式で表される。 それぞれの式は、波の波長や周期, 振動のようす をもとにして考えることができる。 解説 (1) 波は 0.10s間に2.0m進んで 2.0 0.10 おり, 速さは, v=· 図から, 波長 = 16m なので,周期Tは, T= 入_16 V 20 = 0.80s =20m/s 振動数fは, f= =1.25 1.3Hz T 0.80 (2) 図の波形において, 1波長分 (入=16m) はな れた位置どうしでは位相が2異なり, t=0の とき x=0の媒質の変位はy=0 なので, 位置 2 1 CATO -1 -2 y〔m〕 10 発展問題 356 進む向き 20 088 x(m) NEOT 126 W= 2π 77" xでの位相 (sin の角度部分)は、2016=7 8 と表される。 また, x=0 から x>0 に向かって まず波の山ができており、波の振幅が2.0mな ので,求める波形の式は, y=2.0 sin- DIVER A (3) 媒質の振動では1周期 (T= 0.80s) 経過する ( と位相が2進み, x=0の媒質の変位は,図か ら,t=0のときにy=0 なので、時刻t におけ る位相 (sin の角度部分) は, 2π- t =2.5t と (部分)は,270.80 表される。 また, x=0の媒質は, t = 0 から微 小時間後に負の向きに動くので、求める変位y の式は, y=-2.0sin 2.5t TIC 199 TX 8

回答募集中 回答数: 0