学年

教科

質問の種類

物理 高校生

なぜこれは電位が急に足し算をし出すんですか? 意味がわかりません。位置エネルギーなら2dの点だけでいいじゃないですか。何やってんですかこれって。 図で教えてくれると助かります。

09316 T〔N〕と 。 り、 7 320 だけ離 ニ運ぶ →B /m 低いから 1773年にキャヴェンディッシュが発見していた。 電気力線と等電位線 物理 例題 69 の点電荷がある。 クーロンの法則の比例定数をko とし,重力の影響は考えない。 真空中で, x軸上の原点に電気量4gの正の点電荷, x=dの位置に電気量4の正 (1) 軸を含む平面内の電気力線の様子を表す図として最も適当なものを下の① ~④の中から選べ。 ただし, 図中の左の黒点は、軸の原点、右の黒点はx=dの 位置を示す。 なお, 図では電気力線の向きを表す矢印は省略してある。また, 等 ■位線を表す図として最も適当なものを, ①~④の中から選べ。 Q (2) x軸上で電界が0になる点はどこか。 0- xxx 1-X 1-43 3 質量(m,正の電気量 Qをもつ荷電粒子をx軸上のæ=2dの点に静かに置いた。 の電荷がx軸上の無限遠点に行ったときの速さを求めよ。 ① センサー 101 電気力線 ①接線が電界の方向 ②密→電界が強い 疎→電界が弱い ③正電荷(無限遠) から 負電荷 (無限遠) ヘ ④等電位面と直交 ⑤ Qから出る電気力線の 本数N=4kQ N ⑥E= andal S (SE に垂直な面積) 等電位線 地図の等高線に対応 正電荷→山の頂上 負電荷→海底の谷底 りになる点あいる センサー102 センサー 103 真空中の荷電粒子の運動 ~mv²+qV=- 2 (重力を考えない場合) Furk 解答 (1) この場合、電気力線は正電荷から出て無限港に行く。 *********** ------- 本数は電気量に比例する。 答えは④ 実際は三次元なので,この平面内の本数が電気量に比例すると は限らない。 等電位線は地図の等高線に対応する。 電気量の絶対値が大き いほど等電位線は密になる。 答えは ② (2) 世界の強さは+1Cの電荷が受ける力である。電界がOK なる点の座標をx(0<x<d) とすると、クーロンの法則よ り ko v=kx²² 4g×1 2² = ko g×1 (d-x)² これより (3-2d) (x-2d) = 0 V=ko エネルギー保存 mx02- 4q 9 + ko (2d-d) 2d ▶309 316 x=2dの点では電界の向きが同じなので不適。 ( 3 無限遠点を電位の基準とすると, x=2dの点の電位Vは, 3koq ....... (1) d +|QV|=| ①②より, v= GK Fr Bxx cd) mu²+Qx0 6koqQ md 2 ゆえに, x= d 3 物理 基礎 物理 24 電界と電位 197

回答募集中 回答数: 0
物理 高校生

熱力学の問題です 解説お願い致します

(B) 図2のように, 断熱材でできた円筒容器を鉛直に設置し, その内部で鉛直方向 になめらかに移動できる断面積Sのピストンを入れる。 ピストンの下の空間 (空間A)には単原子分子理想気体Aが密封されており, ピストンの上の空間 (空間B) には単原子分子理想気体Bが密封されている。 空間Aと空間Bの高さ の合計は2Lである。 空間B内の気体分子数は空間A内の気体分子数の2倍とす る。 ピストンは気体の出入りを許さないが, 熱の出入りは自由にできる。 はじめ, ピストンは底面から高さ 13 Lの位置で静止していた。このときの気体Bの圧力 をPとし,この静止した状態を状態 I とする。 状態 Ⅰ から空間A内の気体Aを ゆっくりとヒーターで加熱したところ, ピストンは徐々に上昇し, しばらくして 加熱を止めたところ, ピストンが底面からある高さで静止した。 この状態を状態 ⅡI とする。 状態ⅡIの気体Bの圧力は2P。 である。 ピストン, 容器, ヒーターの熱 容量およびピストン, ヒーターの体積は無視できる。 重力加速度の大きさはと する。 空間B 空間 A 理想気体B 理想気体A 図2 ピストン (二) ピストンの質量を S, Pog を用いて表せ。 (ホ) 状態 Ⅰ から状態ⅡIまでにヒーターが気体Aに加えた熱量を S, Po,Lを用い て表せ。

回答募集中 回答数: 0
物理 高校生

クについてなのですが、なぜ角度を大きくしても波長は変わらないのですか? この答えは②です

キ ク 問5 次の文章中の空欄 に入れる式と語句の組合せとして最 も適当なものを、後の①~⑥のうちから一つ選べ。 6 図6のように、 底面が水平で十分に大きい水槽に水を入れ, 一定の厚さの ガラス板を水槽の底に沈める。ガラス板を沈めていない部分を領域1,ガラ ス板を沈めて浅くした部分を領域2とする。領域1で振動板を水面に触れる ようにして一定の振動数で鉛直方向に振動させたところ,水面波が伝わり, 領域1と領域2の境界面で屈折した。このときの波面の様子を写真に撮って 調べたところ、図7のようになっていた。 領域1を伝わる波の波面と境界面 のなす角度は45°,領域2を伝わる波の波面と境界面のなす角度は20°で あった。このとき,領域1を伝わる波の速さと領域2を伝わる波の速さ 2比は, 102 = キ である。 また, ガラス板の位置を変えて、領 域1を伝わる波の波面と境界面のなす角度を45°より大きくしたとき,領域 2を伝わる波の波長は、図7の場合と比べて ク ガラス板 . 領域2 領域 1 図 6 ZSME 振動板 ② (3) 領域2 ガラス板 キ 波面 : 領域 1 sin 45° sin 20° sin 45° sin 20° sin 45° sin 20° sin 45° sin 70° sin 45°: sin 70° sin 45° sin 70° 図 7 20 Warni ク 大きくなる 変わらない 小さくなる 大きくなる 変わらない 小さくなる MSR

回答募集中 回答数: 0
物理 高校生

これ基底状態から第一励起状態になるときk格からL格に電子が1つ移ることで電子同士の斥力でなんかすごいことになったりしないんですか?

594. フランク・ヘルツの実験 解答 (1) 解説を参照 (2) 2.5 指針 加速された電子の運動エネルギーが, 水銀原子の基底状態と, 最もエネルギーの低い励起状態とのエネルギー差に等しくなるとき, 原 子内の電子を励起し、エネルギーを失う。 エネルギー差に等しくないと きは、原子内の電子を励起できず, エネルギーを失わない。 解説 (1) FG間の電位差で加速された電子は,その運動エネル ギーが小さいとき, 水銀原子に衝突しても, 原子内の電子を励起でき ないので,途中でエネルギーを失うことなくPに達する。 しかし, 加 速した電子のエネルギーが, 水銀原子の基底状態と, 最もエネルギー の低い励起状態とのエネルギー差に等しくなると,電子は,水銀原子 内の電子を励起し, エネルギーを失う。 このため,電子は, Gよりも わずかに電位の低いPに到達できなくなり、 電流計に流れる電流が減 少する。 さらに電位差Vを大きくすると,やがて電子のエネルギーは, 2回目の励起によって失われ、 再び電流が減少する。 このようにして, 電流は,増加・減少を繰り返す (図)。 (2) 電位差Vが4.9V 大きくなるたびに、電流は減少を繰り返すため. 水銀原子のエネルギー準位の差は 4.9eV である。 また, 観測される紫 外線は, 励起された水銀原子内の電子が基底状態にもどるときに放出 される光子であり, 4.9eVのエネルギーをもつ。 プランク定数をん, 電気素量をe, 光速を c, 紫外線の波長を入とする と. eV= 入について整理し, 各数値を代入すると, i= hc eV = hc 入 ( 6.6×10-34) × ( 3.0×10) (1.6×10-19)×4.9 = 2.52×10-7m 2.5×10-7m 理 C

回答募集中 回答数: 0
物理 高校生

なぜ糸の張力がMgになるのか教えてください🙇‍♀️

円盤からの垂直抗力を mg 発展例題19 円錐容器内の運動 V 容器の内容 z軸を中心軸とする頂角20の円錐状の容器がある。容器の内 側に質量mの小球があり、容器の底にある小さな穴を通して,質 量Mのおもりと糸で結ばれている。 小球は,穴から円錐の側面に 沿って距離Lの位置を保ち、 容器内のなめらかな斜面上を速さひ で等速円運動しており, おもりは静止している。 糸と容器との間 に摩擦はなく,重力加速度の大きさをgとする。 小球の速さv を, m, M, L, 0, g を用いて表せ。 (筑波大改) 指針 小球とともに回転する観測者には, 距離Lが一定なので, 小球は,重力, 糸の張力, 垂直抗力, 遠心力を受けて, 力がつりあって静止 しているように見える。 円錐の側面に沿った方向 の力のつりあいの式を立てる。 なお, 静止した観 測者には,小球は重力, 糸の張力, 垂直抗力を受 けて,等速円運動をするように見える。 解説 小球とともに回転する観測者を基準 に考えると,小球には図のような力がはたらく。 糸の張力は,おもりが受ける力のつりあいから, m 発展問題211, 216 -sin0 LO m Mg である。 円運動の半径 垂直抗力 はLsin0 なので, 遠心力 の大きさはmv²/ (Lsine) となる。 円錐の側面に沿っ た方向の力のつりあいから, Mg 2 vo² 10 L sine - mg cose-Mg=0 L Vo=. (M+m cos0) g m M Vo vo² m L sine m -sind L sind mg mg cost カ E に } @ t 21 21

回答募集中 回答数: 0