学年

教科

質問の種類

物理 高校生

問4で解き方はわかったのですが、自分で置いたvを消去する方法を教えてください。

22 2022年度 物理 物理 (1科目: 60分 2科目 : 120分) Ⅰ 図1のようになめらかな水平面上で質量mの小球Aと質量mの小球Bが 同じ速さでx軸からの角度45°で進み、座標の原点で衝突した。衝突後,小球 A は角度の向きに速さで進み、小球Bは角度0g の向きに速さひBで進んだ。 ただし、0はx軸から反時計回りを正とし, 0g は x軸から時計回りを正とする。 また、小球Aと小球Bが衝突するとき互いに受ける力はy軸方向であった。以下 の間1~4に答えなさい。なお,問3と問4は、解答の導出過程も示しなさい。問 題の解答に必要な物理量があれば、それらを表す記号は全て各自が定義して解答欄 に明示しなさい。 (配点25点) 問1 衝突前の二つの小球の運動量の和のx成分とy成分を含む式で答えな さい。また、衝突後の二つの小球の運動量の和のx成分と成分を角度0A, 0g を含む式で答えなさい。 2 衝突後の二つの小球の運動量の和のx成分と成分をvo を用いて答えなさ い。 3 この衝突が完全弾性衝突である場合に, tan by を ma.mB のみを含む式で表 しなさい。 問4 次に、小球Aと小球Bが完全非弾性衝突により一体となった場合を考え る。この場合,小球Aと小球Bの運動エネルギーの和が, 衝突の前後でどれ だけ変化するか, m, MB, Vo のみを含む式で表しなさい。 II #1 問 小球 A Vo Vo 小球 B 電場の向きがわかる 45° 45° 小球 A 図 1 Or 0B 小球 B UA VB 】1~5に答 2022年度 物理 23 さい。 なお、 問3~5 あれば、 を を含 また,図中に

回答募集中 回答数: 0
物理 高校生

ローレンツ力の問題についてなのですが、フレミングの左手の法則をどのように利用すれば良いのかわからないです。

基本例題 58 ローレンツカ 真空中で図の正方形 abcd の内部を磁場が紙面に対して垂直 に貫いている。いま, 質量 m[kg〕,電気量e [C] の陽子が, a から 〔m〕 離れた図の位置から ad に垂直, かつ磁場に垂直に 速さ [m/s]で入射し, aとbとの間から abに対して垂直に 磁場の外へ飛び出した。 磁場は abcdの内部のみにあり, 一様 であるとする。また,陽子は紙面内を運動するものとし,重力の影響は無視する。 (1) この磁場の向きと磁束密度の大きさを求めよ。 (2) 陽子が磁場内に入射してから磁場の外に飛び出すまでの時間を求めよ。 解答 (1) ad に垂直に入射した陽子が, ab に 垂直に磁場を抜け出たことから, 陽 子は点aを中心とする半径r[m〕 の円軌道を運動し, ローレンツ力は 軌道の中心点aを向いていたことが わかる。フレミングの左手の法則よ り 磁場の向きは紙面の表から裏の 向きである。 磁束密度をB[T〕 とす ると,等速円運動の運動方程式より POINT 指針磁場に垂直に入射した荷電粒子は、磁場から運動方向に垂直なローレンツ力fを受け,こ の力を向心力として等速円運動をする。磁場の向きは,正電荷の運動の向きを電流の向き として, フレミングの左手の法則で考える。 2² m = evB r mo よって B= (T) er (2) 磁場内の円弧は円の4 180 向心力=ローレンツカ V 2πr 4 磁場内における荷電粒子の運動 a m- n² =qvB d 分の1だから, 飛び出 すまでの時間を t〔s] とすると vt== a Tr よってt=- [s] 2v b

回答募集中 回答数: 0
物理 高校生

斜方投射の問題です ⑷までは解けました、⑸のsin2θ=1にしなければならないところがなぜなのかわかりません、誰かお願いします🙇‍♂️

なる。 下図 「 S t[s] 基本例題 11 斜方投射 小球を水平面となす角0だけ上方に速さ を通過して水平面上の点Qに落下した。 重力加速度の大きさをgとする。 (1) 投げてから最高点Pに達するまでの時間を求めよ。 (2) 投げてから落下点 Q に達するまでの時間tを求めよ。 (3) 最高点Pの地面からの高さHを求めよ。 (4) 水平方向の到達距離 OQ を求めよ。 0 (5) が一定のとき, OQ が最大となる 0の値はいくらか。 0 水平面 考え方 ? 投げた点を原点 0, 水平右向き, 鉛直上向きにそれぞれx, y軸をとると方向 方向は鉛直投げ上げと同じである。 は等速直線運動, [解説] ADVEN (1) y方向について, 最高点 Pではv=0m/sだから, v=vo-gt より vo sin g (2) y方向について,落下点Qではy = 0mだから, 1 y = vot- -gt より, 0 = vosin0- gt よって, t= 0 = vosino.tz - 1/201² 2vo sin g (3) y方向について, v2 - vo2 = -2gyより, よって, t2 = 24.5≒25m/s 02-(vosin0) = -2gH よって, H= 2g Vo² sin ²0 別解y = vot-1/2gte より, H = vosind.h 2 Vo %0² sin ²0 (t > 0) (※運動の対称性より, t2=2t) (5) (4) は OQ= vo² sin 20 g のとき OQが最大となる。 これより, 20 = 90° よって, 0 = 45° 最高点P で点Oから投げ出したら, = - よって, H= 2g (4) x 方向について, x = vot より, OQ = vocosAt2 200² sin cos よって,Q g 2 għ₁² H と書き直せるから, sin 201 初速度の x成分= COst y成分= vosin A 2 sin Acos0= 自己評価:9AB C 10 A B C 11 ABC sin 20 23

回答募集中 回答数: 0
物理 高校生

振幅が何故こうなるのか分かりません

66 波の式 軸の原点Oにある波源Sか 振動数f, 波長の波が左右 に出ている。 S から右に距離L だけ離れた所に壁Rがあり,波 はここで振幅を変えずに固定端 反射される。Sから出る波の0 における変位y, 時刻t に対して y = Asin 2nft と表されるものとする。 (0 ≤ x ≤ L) (2) 壁からの反射波の式y2 をx, tの関数として表せ。 (x≧L (1) Sから壁に向かう入射波の式をx,tの関数として表せ。 66 波の式 COS @= R (3) SR間で,合成波の変位は次式のように表される。 y = 2A sin (イ) (ア), (イ)を埋めよ。 また, 常に y = 0 となる位置xを整数 n = 0, 1,2…)を用いて表せ。 (4) S の左側に生じる波 (合成波) の振幅を求めよ。 また, 振幅が最大 となるときのLを入, n で表せ。 (東京理科大) 187 Level (1) ★ (2), (3) ★ (4) ★★ Point & Hint 力学では単振動の式は y=A sin wt として扱うことが多い。 2π の関係がある。 T 点0で起こることは, 3 4tの時間を隔てて位 置xでくり返される。 (1) 波が原点Oから位置 xまで伝わるのに要す る時間⊿t をまず調べる。 次に, 位置 x で時刻 tのときの変位は, 0 でのいつの時刻の変位と 等しいかを考える。 (2) (1)の結果から壁 R でのy2 の時間変化がわかる。 そこで, R から位置 xまで伝 わる時間を調べる。考え方は (1) と同じこと。 a IB cosa FB (3) 三角関数の公式 sinα土sinβ=2sin@th COS 2 (4)まず,Sから直接に左へ向かう波の式をつくる。 を用いる。

回答募集中 回答数: 0