学年

教科

質問の種類

物理 高校生

⑴の解説のtの時鉛直方向の速さ0はなぜですか?Aの地点では速さがある気がするんですが、、、

③ サッカーのシュートについて, 単純化した状況で考・ えてみよう。 図のように, 点Pから初速度ひでけり出されたボ ールは, 実線で表した軌道を描いて点Aに到達する。 点 A の真下の地点Bにいるゴールキーパーは、腕をのばしたま ま真上にジャンプし,点Aでこのボールを手でとめる。 PB Vz の距離は1, ABの高さは ho, ゴールキーパーの足が地面を離れた瞬間の手の高さはh (h<ho)である とする。重力加速度の大きさをgとし、空気の抵抗はないものとする。 [A]ボールはゴールの上端A に水平に入るようにけられる。 小球 (1) ボールが点P でけられる時刻を 0, 点Aに到達する時刻を to とする。 ボールの初速度での鉛直成 分はいくらか。 正しいものを次のア~オから1つ選び符号で答えよ。 toの時、鉛直方向の速さ。 1 アgto2 21 1 オ2gto ウgto I √2gto O=Ui-gto gto 水平方向の初速度をひっとすると (2) けり上げる角度を0としたとき tand はいくらか。 正しいものを次のア~オから1つ選び符号で答え vato=lv= よ。 1 ho アー - 2√g ho 1 √2⁹ 1. √2190² @ 7910² 0 イ イ (3) 時刻t を点Aの高さho を用いて表す式はどれか。 正しいものを次のア~オから1つ選び符号で答 えよ。 上向き正 - ho=vito/2gt=² ho 2g Sho + 12h0 g to = g [B] ゴールキーパーは、 のばしている手がちょうど点 A までとどくようにジャンプして,点Aでボールをと める。 ただし、ジャンプしてからボールをとめるまで姿勢は変えないものとする。 ho g. ウ ho hi (1) ウ (2) ウ エ Cho 12g √2 7900² エ エ (3) (4) ゴールキーパーの足が地面をはなれる時刻を とする。 ボールの高さと時間の関係を実線一 で 正しいグ から後のゴールキーパーの手の高さと時間の関係を点線・・・・・でかくとどうなるか。 ラフを次のア~エから1つ選び符号で答えよ。キーパーの手は鉛直投げ上げ 高さ ア 高さ ① 高さ ウ 高さ↑ ho zzzz 0 t₁ to O t₁ to 0₁ カ 2ho オ ho (1) より 796² tane = 1/2 = 9 tox to H B 0 t₁ to 時間 (5) hiho の場合に時刻を表す式はどれか。正しいものを次のア~エから1つ選び符号で答えよ。 (4) より ボールの高さが柔hoになる時刻が七、 no=uti-iotigat (1)(3) ho (1) ho = 1/1/8t² ぴはん ato²-1/2gto=1/2gt² g ho (4) イ エ (5) ウ Eve ral no 1 ob 2411

回答募集中 回答数: 0
物理 高校生

(2)で写真二枚目の5行目の式 Ry1'=(Mcosθ/2w)×{g(w+h tanθ )-(vcθ^2(h-wtanθ))}=0 があると思うのですが、その直前で「P1を中心として反時計回りに転覆しないためには、重心がP1より右側になければならない。よって、w-h ta... 続きを読む

Chapter 1 力学 Section 1 力と運動 例題 10 等速円運動 ② 図1はレールに乗っている列車を正面から見た 図である。 レールの幅は2w であり, 列車の質量は Mである。 列車の重心Gは、レール間の中心線上 で、レールと車輪の接触点から高さんの位置にあ る。 空気の抵抗や摩擦力などは無視できるものと して、以下の問いに答えなさい。 (1) この列車が,たいらな地面に水平に敷かれた 円形の曲線路を、一定の速さで通過している。 (A) 重力加速度をg, 列車に作用する慣性力を Fとして, 曲線路の内側のレールから列車 が受ける垂直抗力 R1 と, 外側のレールか ら列車が受ける垂直抗力 R-2 を、 それぞれ M, w, g, F, h を使って表しなさい。 図2 (B) 曲線路の半径を , 列車の速さを”として, 慣性力F を M, r, o を使って表しなさい。 ただし,rはレール 幅 2w に較べて十分に大きいものとする。 (C) 列車の速さが大きくなると, R, が減少し,やがて列車は転覆する。 この場合の限界の速さve を wr, g, hを使って表しなさい。 (2) 曲線路では, 列車の安定を増すために、 通常, 曲線路の外側のレー ルを少し高くしている。 図2に示すように, 線路が角度日の傾きを つけて敷かれているとして, 列車が転覆する限界の速さve を w, r, g,h, θ を使って表しなさい。 (三重大) w wo 200 考え方の キホン to 10 I (1) (A)右図のように、車輪とレールとの接点をそれぞれ P1, P2 とし, 車輪がレールから受ける抗力の水平成 分をそれぞれぃたとする。 鉛直方向の力のつりあ いより I 1 円運動の問題では,中心方向外向きの慣性力すなわち遠心力を考慮 すると, 有効な場合が多い。 例えば、人工衛星の中で宇宙飛行士が ふわふわ浮いて見えるのは, 人工衛星から見て, 宇宙飛行士に働く地球の万有引 力と遠心力がつりあうからである。 この問題でも、列車から見た遠心力を考慮す ると, 剛体のつりあいの問題として扱うことができる。 なお、遠心力をむやみに軽んじてはいけない。 現代の物理学では,遠心力 ( 般には、慣性力)といわゆる実在の力 (この場合は, 向心力)とは、同等である I とみなす。 (2)までは、外側のレールは高くしてない。 1 R1+R2-Mg=0… ① P2 のまわりの力のモーメントのつりあいより Mgxw-R1 ×2w-Fxh=0 ② 〔注〕 P1 のまわり: R12×2ω-Mgxw-Fxh= 0 ③ ①② (あるいは, ①, ③ あるいは, ②③ より -Mg- R₁₁ = h R2= g+. 〔注〕この場合の向心力はf+fである。 水平方向の 力のつりあいより、 S 2w (B) 円運動の加速度は2/rだからF=Mv²/r (C) (A)からわかるように, R2は常に正である。 (B)も用いて h Mv² :. R₁₁=Mg-20 =0 :: Vc= F fi+f₂=F=Mv² /r (2) 右図のように車輪がレールから受ける抗力の斜面に垂 直な成分をそれぞれRai', R2' とし、斜面に平行な成分を それぞれだとする。 斜面に垂直な方向の力のつりあ いより P回りの モーメント Mo -F R入 Mcose {g(w+htand)- 2w fr Vo² r rwg h R₂₁ Ra Mg Ri'+R,a'′-Mgcos0-(Mus/r)sin6=0・・・・・・・・ ④ PT P3 Or MY K P2 のまわりの力のモーメントのつりあいより下 Mgx(w+htane)cos-Ra'x2w_(Mu²/r)x(h-wtand) cos0=0 BA w ....... 5 Mg x (cose+ htang.cosa) Pr カ 〔注〕 Pi: Ri' ×20-Mgx(whtand)cos0 (Mur) x(h+wtand)cosB = 0.⑥ ④,⑤ (あるいは、④⑥ あるいは, ⑤⑥ より 列車 の動き Mer x (hcoso-tutanocuse) (h-wtan6 tan 0)} B 10 1-1 力と運動 47

解決済み 回答数: 1
物理 高校生

(オ)解説にある「行きの時間だから、小さい方の解」ってあるんですけど、行きの時間ってなんですか? 往復する運動とかじゃないと思うのですが・・・ (出典:難問題の系統とその解き方)

Chapter 1 力学 Section 1 力と運動 I I 32 坂を下るときか を求めたい。 (エ) 求める値をひとすると, Pの斜面方向の加速度はgsin(だから加速するので 1 Ro My したがって,台が動かないための条件 Fo≦μoRo より vc²-0²=2(gsin)(h/sin) h [別解力学的エネルギー保存則より 左=- I (ク) 前頁の図を参照して 1 1 1 Ho≧ (カ) 前頁の図を参照して (キ) 前頁の図を参照して msin Acoso Fo Ro M+mcos20 A mgh = 21/12/1 ④,⑥より tan 0= (オ) 求める値を」とすると, P の x 方向の加速度は1gだから Ti vc± √√vc²-2µgl 1= vct₁= 2gt² μg x=tôt +=a+² 行きの時間だから, 小さい方の解をとって } 2 ・mvc ∴.ve=√2gh :. t₁ = 1 1 静止系から見てPは Imgと tano からしか力を受けない。 1 つまり、この2つを分解して求まるdads/ 1 ①,③より台などの影響を加味したもの.... 1 Nを消去するとαx= - Mβ/m Mβ=Nsin 0 (ケ)Pの台に対する相対加速度の方向が, 水平と日 の角をなすので (右図を参照) max= Nsin 0 may=mg-Ncos 0 vc-√vc²-2μgl √2gh – √2g(h-µl) (>0) μg ay ax-β may (M+m)β 8 cos = = (M+mcos²0 )g μg -Bt ₂² B ay 28³+²=1×1 Vc = B ay 前ページ √2gh ay hasino ① GBは実質負なので足してるようなも (サ)台の変位をXとし,PがAB間を移動するのに要した時間をもとすると usin01/12ast.x ml cost sin0 ;. | X| = M+m 1 ② αx-B h sing m (M+m)tand 〔注〕 例題 解け (6) f 〔注〕台カ る木 運動 静止系か がα, B, ように求 解説 ニュートンの 方程式という ように、個別 第1法則は必 ある物体 体が絶対的に が何か (ある えるだけであ なれば一般に を設定しなけ 物体に をしているよ 法則が成り立 mβ 25 gb b masine

解決済み 回答数: 1