学年

教科

質問の種類

物理 高校生

(1)は自力でやって見たんですけど(2.3)でつまづいてしまいました。ワーク見てもさっぱりですよろしくお願い致します🙏

次の文を読み、問い(問1~3)の答えとして最も適当なものを、それぞれの解 群から一つずつ選べ。 [解答番号 11 ~ 13 [] 図のように, なめらかに動く軽いピストンのついた。 断面積 0.030m²の円筒 容器がある。 円筒容器の底には温度調節器がついており、 円筒容器内に熱を与 えることができる。 ただし, 円筒容器の内と外との間で熱のやりとりはないも のとする。 この容器内に、 温度 0℃, 圧力 1.0×10 Paの理想気体 0.50mol を封じ たところ、 体積は1.13×10-2m² であった。 いま。 この気体の圧力を一定に保ちながら, 温度調節器によって, 気体に30 OJの熱量を与えたところ、 気体の温度は上昇し, ピストンが 0.040m移動した。 (m²) ① 40 ② 80 ③ 120 180 ⑤ 300 (Pa) (m) W = 5 問1 気体が外部にした仕事[J]はいくらか。 + W = PAV W=PAV 200 ⑥ 12102 [J] =120 ① 40 ② 80 ③ 120 ④ 180 (5) 200 ⑥ 300 10×10×0.0310×0.040 問2 気体の内部エネルギーの増加[J]はいくらか。 12 円筒容器 ピストン 温度調節器 問3 気体の温度の上昇 [℃]はいくらか。ただし、 気体の内部エネルギーの式を 用いてよい。 その際、 R-8.3J/mol・K を使うこと。 13 [C] [℃] ① 10 ② 15 ③ 21 ④ 25 ⑤ 29 ⑥ 33

回答募集中 回答数: 0
物理 高校生

共テ物理基礎の波の問題なんですが、振動数に√が入ってくる理由と、比の表し方がどうにも理解できません。わかる方お願いします。

27 伝わる波の速さ) (p.138) AB間の中心を押さえながら、その弦を鳴らした・・・ ABの中心が節となる定常波 解答 問1 ① リード文check 23 ●基本振動 腹が1つの定常波 間3④ 税 弦の固有振動のプロセス プロセス 0 Process プロセス 1 定常波の図をかく プロセス 2 図から波長を, 弦の長さを用いて表す 問1 図2a より m が4倍になると手 は2倍になってい る。 プロセス 3 「v=ja」, 「f= -」を用いて、必要な物理量を求 張力S める 重力mg プロセス 3 「v=fi」 より 押さえないときの振動数は fmに比例 図2a する。 f = k₁√√m (k, は比例定数)・・・① 図2bより Lが2倍 になるとは 1/12 倍Lが 4倍になるとは 1/12 倍に なる。 f1/12に比例する。 ABの中心を押さえたときの振動数は ==1 よってf'f ③ 問3 プロセス プロセス 2 図 2b 実験結果より f=(k2は比例定数)………② 押さえないときの振動数は f=k³ vm m ①.②より ✓m L ABの中心を押さえたとき、この弦につい ているおもりの質量を m' とすると, 振動数 f=k L 問2 おもりの質量を変えていないことから, 弦 の張力は変化しない。 (kは比例定数) ① は m' f'] = RY L よって, 弦を伝わる波の速さは変化しない。 2 プロセス 振動数が等しい弦が互いに共鳴するから ンター過去問演習 プロセス 2 押さえないとき ✓m k- = k √ m' L 波長は = 2L 2 AB の中心を押さえたとき m = 4m' 波長は '=L よって m: m'=4:1 ④ (閉の ■

回答募集中 回答数: 0
物理 高校生

共テ物理基礎の波の問題なんですが、振動数に√が入ってくる理由と、比の表し方がどうにも理解できません。わかる方お願いします。

27 伝わる波の速さ) (p.138) AB間の中心を押さえながら、その弦を鳴らした・・・ ABの中心が節となる定常波 解答 問1 ① リード文check 23 ●基本振動 腹が1つの定常波 間3④ 税 弦の固有振動のプロセス プロセス 0 Process プロセス 1 定常波の図をかく プロセス 2 図から波長を, 弦の長さを用いて表す 問1 図2a より m が4倍になると手 は2倍になってい る。 プロセス 3 「v=ja」, 「f= -」を用いて、必要な物理量を求 張力S める 重力mg プロセス 3 「v=fi」 より 押さえないときの振動数は fmに比例 図2a する。 f = k₁√√m (k, は比例定数)・・・① 図2bより Lが2倍 になるとは 1/12 倍Lが 4倍になるとは 1/12 倍に なる。 f1/12に比例する。 ABの中心を押さえたときの振動数は ==1 よってf'f ③ 問3 プロセス プロセス 2 図 2b 実験結果より f=(k2は比例定数)………② 押さえないときの振動数は f=k³ vm m ①.②より ✓m L ABの中心を押さえたとき、この弦につい ているおもりの質量を m' とすると, 振動数 f=k L 問2 おもりの質量を変えていないことから, 弦 の張力は変化しない。 (kは比例定数) ① は m' f'] = RY L よって, 弦を伝わる波の速さは変化しない。 2 プロセス 振動数が等しい弦が互いに共鳴するから ンター過去問演習 プロセス 2 押さえないとき ✓m k- = k √ m' L 波長は = 2L 2 AB の中心を押さえたとき m = 4m' 波長は '=L よって m: m'=4:1 ④ (閉の ■

回答募集中 回答数: 0
物理 高校生

オ、が分かりません。詳しい解説をお願いします。

図1のように、理想気体が入った容器 A と容器Bがあり, コックの付 2 いた容積の無視できる管でつながっている。 容器Aの容積は Vo で一 定であるが, 容器Bには滑らかに動く軽いピストンが付いていて容積が変 化するようになっている。 ピストンには常に一定の大気圧 Poがかかって いる。容器Aと容器 B, コック, 管, ピストンはすべて断熱材でできてい る。また, 容器Bには気体を加熱および冷却できる温度調節器が取り付け られていて,気体の温度調節が可能である。 温度調節器の体積と熱容量は 無視できるものとする。 次の文章中の空欄 ア~オ に入る適切な数式を記せ。 はじめ、コックは開いていて, 容器A内と容器B内の気体はともに圧力 Po, 温度 To, 体積 Vo の状態にあった。 その後, 過程 ①~③のように容器内の気体の状態を変化させた。 過程 ① まず, コックを開けたまま気体をゆっくりと加熱した。 これにより、温度調節器から気体へ熱量Q 容積 Vo 容器A 大気圧 Po |!! コック 温度調節器 emm オ:Q 容器B が与えられ, 容器A内と容器B内の気体の温度はともに 2T になった。 加熱後の容器B内の気体の体積は [ア] である。また、この過程で容器内の気体が外部にした仕事はイであり、容器A内と容器B内 の気体の内部エネルギーは,あわせてゥだけ増加した。 過程 ② 次に、コックを閉じ、 容器B内の気体だけをゆっくりと冷却し、体積をV にした。 冷却後の容器B 内の気体の温度はエである。 過程 ③ 次に、再びコックを開いた。 温度調節器を作動させずにしばらく待つと、容器A内と容器B内の気 体の温度はともに To になった。 この過程でピストンの位置は変化しなかった。このことから, 過程 ② で 気体から温度調節器へ放出された熱量はオであることが分かる。 7: 300 イ: 2Povo 7: Q-2P₂ Vo I: 3 To

回答募集中 回答数: 0