学年

教科

質問の種類

物理 高校生

どうしてマーカーの式になるのか教えて欲しいです🙇🏻‍♀️ (き)と(く)です。

14 2022年度 物理 立教大理 (2/6) VI.次の文を読み、下記の設問1.2に答えよ。 解答は解答用紙の所定欄にしるせ 電場や磁場の影響を受け, xy 平面上を運動する荷電粒子を考える。 図1のように, y 軸方向正の向きに強さE の一様な電場がかかっているとする。質量m, 電気量g(g > 0) の荷電粒子が時刻 t = 0 に原点から初速度v=v, 0 ) ( 0 ) で運動を開始した。時刻でのこの粒子の位置は である。 (x, y) = ( い ) 立教大理(2/6) max= お ma か 2022年度 物理 15 となる。このことから,この粒子の運動は, by 座標系に対し一定の速度 (きく で運動する観測者から見ると円運動であることがわかる。 この粒子が xy 平面上に描く軌 道をCとする。 また, 質量m 電気量gの荷電粒子が原点Oから初速度 =(0.0)で運動する場合の軌道を C' とする。 このとき、CはAである。 ~くにあてはまる数式をしるせ。 文中の空所 A にあてはまる記述としてもっとも適当なものを、次のaf から 1つ選び、その記号をしるせ。 初に y 軸を通過するときの時刻はt= 図2のように, xy 平面に垂直に, 紙面の裏から表に向かって、磁束密度B の一様な磁 場がかかっているとする。 質量m, 電気量 gg > 0) の荷電粒子が時刻 t = 0 に原点 0から初速度v=v,0) > 0) で運動を開始した。 この粒子が運動開始後に最 1. 文中の空所 う で、そのときの座標は (x,y) = (0, え ) である。 図3のように, y 軸方向正の向きに強さE の一様な電場と, xy 平面に垂直に紙面の裏 から表に向かって、磁束密度 B の一様な磁場の両方がかかっているとする。 質量m,電 気量g(g> 0) の荷電粒子が時刻 t = 0 に原点から初速度 = (0,0)で運動を 開始した。 この粒子のx軸方向, y 軸方向の速度をそれぞれ Ux, Uy, 加速度をそれぞれ Qs, ay とすると,運動方程式は y a.Cと同じ b. Cをx軸に対して反転させたもの C. Cをy軸に対して反転させたもの dCを原点Oを中心として反時計回りに90°回転させたもの e. Cを原点Oを中心として180°回転させたもの 4.Cを原点Oを中心として反時計回りに270°回転させたもの 1. MA や ド 図1 E ひ O 0 B B 図2 図3

回答募集中 回答数: 0
物理 高校生

なにがどうなってこの式になったのか分かりません。

I わる、 以下の空欄にあてはまるものを各解答群から選び, マーク解答用 紙の該当欄にマークせよ。 図1のように, z軸の正の向きに一様であるが時間とともに変化する磁 場をかける。この中に,長さLで絶縁体の細い糸の一方の端を磁場中の ある点0に固定し,もう一方の端に質量 M, 正の電荷 +α を持つ粒子を つなぐ。 時刻 t <0 のある時刻に. 糸が磁場と垂直に張った状態で,粒子 を磁場と糸に垂直な方向に初速で打ち出した。 粒子は磁場と垂直な平 面上を, 2軸の正の方から見て時計まわりに半径Lで円運動した。 粒子 の円に沿った運動については,粒子の運動の向きを正の向きとする。 円周 率をとし,粒子にはたらく重力は無視してよい。 +9 Bo 図1 B Bo ( 1 + kt ) t 問1時刻t<0では一様磁場の磁束密度は一定値であった。 このとき, Boであった。このとき, 糸がたるまずに等速円運動することのできる粒子の速さの最小値を Vo, 角速度を wo とすると, vo は (1) と表される。たとえば, Bo=1.0T として,回転している粒子が陽子と同じ質量 M=1.7×107kg と電荷 g=1.6×10-1Cを持つ場合, 角速度 wo は、 (2) rad/s となる。 ただ て,粒子の速さは光速よりも十分に小さいものとする。 時刻 t < 0 で粒 子に初速v=3v を与え, t>0では磁束密度をB=Bo(1+kt) (kは正 ω

解決済み 回答数: 1
物理 高校生

なぜ①の式になるんですか?? 距離が違うのでイコールにならないんじゃないんですか?

120 解答 (1) 床:3mg, 壁: 2mg (2) tan O 3tan O (+1) 3 MOD (1) Ante T A R 指針 人がはしごを登っていくと,下端Dが床から受ける静止摩擦 力は大きくなる。 はしごがすべる直前には,静止摩擦力は最大摩擦力 となる。はしごが受ける力を図示し,水平,鉛直方向の力のつりあい 式、下端Dのまわりの力のモーメントのつりあいの式を立てる。 解説(1)人が点に達したとき, はしごはすべり出す直前にある。 このときはしごの下端Dが床から受ける垂直抗力をN, 静止摩擦 0 力をF, 上端Aが壁から受ける垂直抗力をRとすると, はしごが受 ける力は図のようになる。 鉛直方向の力のつりあいから, 垂直抗力 N=2mg+mg=3mg … ① B 2mg L sine N mg A F 下端Dのまわりの力のモーメントのつりあいから, 3L coso D .85 -coso 3L 2mg× coso+mg× cos0=R×Lsin0 4 L 2 2mg R= ・② h tan 2 (2) 静止摩擦力Fは,水平方向の力のつりあいから, F=R ③ 式 ② ③ から, 2mg F=R= …④ tan 4 下端Dから2mg, mg, Rの作用線におろした垂 線の長さ(うでの長さ)は, 3L cosl.1/coso. 4 はしごがすべり出す直前では,静止摩擦力は最大摩擦力となる。 はし ごと床との間の静止摩擦係数をμとすると,F=μNの関係式が成り 立つ。これに式 ①, ④を代入すると、受 Lsine である。 2mg 重心 tan =x3mg "=- 3tan0 大 UC

解決済み 回答数: 1