学年

教科

質問の種類

物理 高校生

(2)を教えてほしいです!!🙇🏻‍♀️🙏🏻🙏🏻 最大摩擦力-動摩擦力して出てきた5Nはなんらかの力でそれが加わることによって物体は最大摩擦力より大きくなり滑り出したんですか?? 解説お願いします!

OH 接して このとき,2物 たらく力 5 たらく力 説動画 A B B 糸 2 糸 1 a 基本例題 17 静止摩擦力と動摩擦力 78,79,80,81,82 解説動画 あらい水平面上に質量2.0kgの物体を置く。 物体と水平面の間の静止 摩擦係数を0.50, 動摩擦係数を 0.25, 重力加速度の大きさを9.8m/s²とする。 (1) 物体を水平方向に大きさf [N] の力で引く。 物体がすべりだす直前の力の大き 静止摩擦の最大値 さf [N] を求めよ。 (2) 物体を水平方向に大きさ f=9.9N の力で引く。 チュは最大摩擦力より大きいも のとして,このときの摩擦力の大きさ F' [N], 物体の加速度の大きさ α [m/s'] を求めよ。 指針 (1) 最大摩擦力 Fo=μN をこえると, 物体はすべりだす。 (2) 動摩擦力は常にF' =μ'N である。 この力を考慮して, 運動方程式より加速度を求める。 解答 (1) 物体にはたらく力は,重力 W, 垂直抗力 N, 引く力 f, 摩擦力Fの4力である。 鉛直方向の力のつりあいより よってN=W=2.0× 9.8N N-W=0 最大摩擦力 F は Fo=μN=0.50×2.0×9.8=9.8N 最大摩擦力 Fo をこえると, 物体はすべりだすので f=Fo=9.8N (2) f は最大摩擦力より大きいので, 物体はすべっている。 このときの摩擦力 F' は動摩擦力であるから F'=μ'N=0.25×2.0×9.8=4.9N したがって、物体にはたらく水平方向の力の合力 F は, 右向きを正とすると 「POINT F=fュ-F'=9.9-4.9=5.0N よって, 運動方程式 「ma=F」 より F 5.0 m 2.0 a= = -=2.5m/s2 垂直抗力 N 摩擦力 F 垂直抗力 N 動摩擦力 F 4何らかのかない 引くカチ 重力 W 加速度 α 引く力 f₁=9.9N 重力 W poってるということ?? 静止摩擦力 μN (等号はすべりだす直前) 動摩擦力=μ'N 基 OXO

回答募集中 回答数: 0
物理 高校生

⑶についてです。黒く書いたように6m延長させるのはなぜ間違ってるのですか?なぜ上下逆転するのですか?

170 W章 波動 基本例題44 横波の伝わり方 図は,x軸上に張られたひもの1点Oがy[m〕 単振動を始めて, 0.40s 後の波形である。 0.20 (1) 振幅, 波長, 振動数, 波の速さはそれ ぞれいくらか。 (2) 図の0,a,b,cの媒質の速度の向 きはどちらか。 速さが0の場合は 「速さ」と答えよ。 両 (3) 図の時刻から. 0.20s後の波形を図中に示せ。 指針 (1) 周期は、波が1波長の距離を 進む時間から 0.40s である。 振幅, 波長をグラ フから読み取り, 振動数, 波の速さを求める。 6 (2) 横波では, 媒質の振動方向は波の進む向き に垂直であり、媒質はy方向に振動している。 (3) 波は1周期の間に1波長の距離を進む。 解説 (1) グラフから読み取る。 振幅 : A = 0.20m, 波長 : 入=4.0m 振動数, 波の速さは, 振動数:= 1/72= 波の速さ : v=fd = 2.5×4.0=10m/s (2) aとcは振動の端なので速さが0である。 Oとbの向きは,微小時間後の波形を描いて調 べる。 0: 上,b:下,aとc: 速さ 0 ST 1 0.40 =2.5 Hz I 08.0 0 JA 20 -0.20 a y[m〕↑ 0.20 0 y[m] 0.20 C HA wazlo -0.20 基本問題 334, 335,336 Say 6 7 FAX 3 微小時間後 I 52 8 HOTO 4 5 6 7 8 x[m] 133-0.20 a (3) 周期が 0.40sなので, 0.20s 間で波は図の状 R 態から半波長分を進む。 x (m) I に ** XX I I 6 7 8 x〔m〕 0 [Point 媒質の速度の向きを調べるには, 微 小時間後の波形を描くとよい。 SHU

回答募集中 回答数: 0
物理 高校生

類題13を教えください!よろしくお願いします🙇‍♀️

2 mv² 例題13 力学的エネルギー保存則 ③ 指針 解 200 図のように, 水平でなめらかな床上で, ばね定数 25N/m のばねの一端を固定 し、他端に質量 1.0kgの物体をつけて 置く。 物体に力を加えてばねが 0.50m 伸びた位置で静かに手をはなす。 ばね mmm mm mm mm mm mm q の縮みが 0.30mになったときの物体の速さ [m/s] を求めよ。 Point 垂直抗力は常に物体の運動の向きに対して垂直にはたらくので、仕事を しない。よって,力学的エネルギー保存則が成りたつ。 step 物体には重力 (保存力) と垂直 抗力と弾性力(保存力) がはたらく。こ の運動では,垂直抗力は仕事をしない ので,力学的エネルギー保存則が成り たつ。 step ② 物体の質量をm=1.0kg, ば ね定数をk = 25N/m² とおく。 点Aと 点Bを図のように定めると,各点で の運動エネルギーと弾性力による位置 エネルギーは,表のようになる。 step ③点Aと点Bの間での力学的エ ネルギー保存則より 0 + 12/23kx0.50²=1/2/m+ -k (0.50² - 0.30²) よって V = 0.16 x k m 1 2 -mv² 1/23kx = 0.40 25 1.0 自然の長さ 0.50m 自然の長さ0.50m mm m m m m m m m m m m m m m m m B -kx0.30² 0.30ml wwwwwww * 運動 エネルギー 位置エネルギー 12 0 mv² = 2.0m/s B 弾性力による 2 10m/s 自然の長さ 0.50m 類題 13 図のように, 水平でなめらかな床上で ばね定数 25N/m のばねの一端を固定 し,他端に質量 1.0kgの物体をつけて 置く。物体に力を加えてばねが 0.50m 伸びた位置で静かに手をはなす。ばね が自然の長さになったときの物体の速さ v[m/s] を求めよ。 PRIE mm m m d d m m d m d m d m d m d m d k×0.502 kx0.30² 振り 成りた 5 10 15 20 目 実力を速と

回答募集中 回答数: 0
物理 高校生

(5)の単振動、最大の速さについての質問です!解説は理解出来てますが、2枚目にあるように単振動の位置エネルギーで表せないのはなぜですか?

114 力学 38 単振動 水平面内において一定の角速度ので 回転している円板がある。 円板上には, 半径方向にみぞが掘られており、その中 にばね定数k,自然長のばねが置かれ ている。 ばねの一端は中心0に固定され, 他端には質量Mの小球Pがつけられてい る。 Pはみぞの中を滑らかに動け, 0 か つ らPまでの距離rを用いておもりの位置を表す。 いま、円板上で静止 している観測者Aには, Por=ro の点に静止して見えた。 真上から見た図 Level (1), (2)★ (3)~(5)★ Point & Hint W (1) ro をlk, M, ω を用いて表せ。 (2) こうなるために必要な角速度に対する条件を表せ。 次に,Pをみぞに沿って外側に動かし, 点0 からの距離 n の点で静 かにPを放したところ, P はみぞの中で運動を始めた。 (3) Pが位置にあるときAが見る加速度をaとすると, A が書くべ き運動方程式はどのようになるか。 みぞ方向外向きを正とする。 (4) Pの位置を,rの代わりに ro から測ってx=r-ro を用いて表 すと, 運動方程式の右辺の力はLx の形になる。 Lをk, M, ω を 用いて表せ。 (5) Pを放してからばねの長さが最小となるまでの時間, ばねの長さ の最小値,およびAが見るPの最大の速さをk, M, w, ro, n, のう ち必要なものを用いて表せ。 (北海道大) Aにとっては遠心力が現れている。 (2) (1) の答えの形から自然に条件が決まってくる。 (5) (4) の結果からPの運動が確定する。 P the p LECTURE (1) 遠心力と弾性力のつり合いより Mrow²=k(ro-l ... (2)>0より kl Yo= k-Mw² k-Mw² > 0 k w√ M 回転が速過ぎると(ωが大き過ぎると),弾 性力より遠心力がまさり つり合う位置がな くなってしまう。 (3) ばねの伸びは -l と表せるから Ma=Mrw²-k(r-1) (4) 上式に r = ro+x を代入すると ( 38 単振動 •mmmm 自然長 遠心力がかかるから, | ばねは伸びているはず。 ①を用いた 115 遠心力 Mをmと書いてい ないだろうか? 物体上から見たとき 向心 外から見たとき ▷じゃ Ma = M(ro+x)w² − k(ro+x-1) ) =Mxw²2-kx =-(k-Mω²)x ......2 ∴. L=k-Mo² (2)で求めた条件よりLは正の定数であり,②はPがx=0(力のつり合 い位置)を中心として単振動をすることを示している。 (5) ②から単振動の周期Tは M 最大の速さは、 公式 Vmax = Aw より [ro を代入する) より速い Queeeeeeeeeeee- 0 Yo T=2nvk-M²2 2π√ とする誤りが多い。ばね振り子の周期 k が不変となるのは、ばねの力のほかに一定の力 がかかる場合のことである。 遠心力は半径と ともに変わる力である。 ばねの長さが最小となるのは, 内側の端の位置にくるときだから、端か ら端までの時間は半周期。よって, M T= √k-M₁² 振幅Aは上図より, A = n-ro よって, ばねの長さの最小値は ro-A=2ro-n # A 中心 k-Mos² A² = (n-1)√² M

回答募集中 回答数: 0
物理 高校生

物理基礎の力のつりあいの問題です。2/Tとなるのはなぜですか??? どなたか教えてください!

基本例題8 力のつりあい 軽い糸の一端を天井につけ, 他端に重さ 2.0Nの小球 をつなぐ。 この小球に, ばね定数 10N/mの軽いばねの 一端を取りつけ, 他端を水平方向に静かに引いた。糸が 鉛直方向と 60°の角をなして小球が静止しているとき, ばねの自然の長さからの伸びは何mか。 Top ■ 指針 小球は,重力, ばねの弾性力, 糸の 張力を受けて静止しており,それらはつりあって いる。ばねの弾性力をF〔N〕, 糸の張力をT〔N〕と すると, 小球が受ける力は図のように示される。 力を水平方向と鉛直方向に分解し,各方向におけ る力のつりあいの式を立てる。これからFを求め, フックの法則を利用してばねの伸びを求める。 ■ 解説 水平方向, 鉛直方向のそれぞれの力 のつりあいから, √3 T〔N〕 √√3. -T [N] 30° T 2 $1 -〔N〕 2.0N F〔N〕 31822 →基本問題 62,63,68,69,70,71,7 水平方向 : F- x= 60° √√3 2 鉛直方向: -2.0=0 T 2 = 2.0N 10N/m -T = 0 ... ① ...2 式 ② から, T 4.0Nとなり,これを式①に代入 て F を求めると, F=2.0√3N ばねの伸びを x 〔m〕 とすると, フックの法則 「F=kx」から, F 2.0√3 2.0×1.73 k 10 10 = 100000- = 0.346m 0.35m Point 問題文の「軽い」とは、質量が無視でき ることを意味しており、「軽い糸」 「軽いばね」 のように用いられる。

回答募集中 回答数: 0
物理 高校生

写真の問題についてですが、なぜ、pointに書いてあることが成り立つのかがわかりません。解説おねがいします。

42 ボイル・シャルルの法則 ② J字形をした断面積一定の管があり、管の壁は熱をよく通す。 大気圧 の下で, その 管に液体を注入し,図(a)に示すように,管の上端の一方をふたでふさいだ。 このとき, ふたにより閉じ込められた気体の圧力はか, 温度は To, 鉛直方向の長さはんであった。 この状態を状態Aとする。 ただし、液体の密度を ρ, 重力加速度の大きさをgとする。 また,液体の蒸発は無視できるとし, 大気圧 po, 液体の密度は常に一定である。 < 2014年 本試〉 状態 B Po JUU Toth (b) QUER FRIOOS) lo Po To 状態 A (a) 42 問1 4 問2 ② 問3② 解説 問1 J字管で,左の液面Mと等しい高さの右の液面 をNとする(右図)。 面Mと面Nが受ける圧力は等しくなる から, DIRKAN 2p(lo-h)gA 6 po+p(li-h)g pi=po+phg 問1 さらに液体を注いだところ, 液面が上昇し, 図 (b)のように, 気体部分の長さがい 液面の高さの差がんになった。 温度は To のまま変わらなかった。 この状態を状態B とする。 状態Bの気体の圧力か を表す式として正しいものを、次の①~⑥のうちか ら一つ選べ。 かすに S ① phg 3 p(l-h)g ⑤ potp (Lo-Z)g Point 1つながりの管では、同じ高さの液面どうしの 圧力が等しくなる。 Takrift. 447 ふる 状態 C T1 Eto that th (c) 2 po+phg att HOR 状態 B P₁ To th M Po -Z N

回答募集中 回答数: 0