学年

教科

質問の種類

物理 高校生

問5の問題がわかりません。 解説のマーカーで線を引いた部分について、なぜ、1/4Tとなったのですか?

体1. 方向 問4 積 12 ③ Point 運動量の変化と力積の関係 物体の運動量の変化は、 積と等しい。 mv2mvy=FAt その間に物体が受けたか m質量 : 変化前の速度, V2 変化後の速度 Fat: 受けた力積 Point! 衝突での作用・反作用の法則 作用・反作用の法則より直線上の小球入 の衝突で小球 A. Bが及ぼし合う力は大きさが等 しく向きが逆である。 そのため, 衝突で小球が小 球Bから受けた力積をIとすると, 小球Bが小球A から受けた力積はと表される。 小球Aと小球Bが衝突したとき, 小球Bが小球 から受けた力積は, 運動量の変化と力積の関係から、 4mv-04mo (右向きに大きさ4mv) である。 作用・ 反作用の法則より 小球 A が小球Bから受けた力 は、4m (左向きに大きさ4mv)である。 問5 単振動の振幅,周期 13 8 Point! 単振動の振幅 小球Bの振動の中心はばねが自然の長さのときの 小球Bの位置(力のつり合いの位置, 小球 A と衝突 した位置)で,単振動の一方の端は小球Bが最もばね を押し縮めた (壁面に最も近づいた)ときの位置であ る。 そして、振動の中心から端までの距離が振幅で ある。 求める距離は,力学的エネルギー保存の法則を用 いると求めることができる。 1/2 =1/2x2 法則を用いると, 1.4mv²= よって, X=20√ 第3問 A 問1 動の周期をT とすると, T=2 衝突直後から小球Bは単振動を始める。この単振 二つの のスリッ 明暗の縞 4m m =4π k 問2 千 小球Bはばねが自然の長さ (振動の中心) の位置か ら単振動を始める。 単振動を始めてからはじめて小球 かばねを最も押し縮めたときまでの時間は 1/17 表されるので, 求める時間は, 1/27=1/2x47 m m =π √ k +α! 単振動の周期 小球Bの単振動の周期を導いてみよう。 ばねが自 然の長さからxだけ縮んでいるとき,水平右向きを 正とすると、小球Bにはたらく力はxと表され る。この力は復元力であり、小球Bの加速度をαと すると、運動方程式は4ma=kxとなるので. a=-- k x と表される。 4m また、単振動の角振動数を とすると a=-x と表されるので、上式と比較して k 小球Bの単振動の周期をTとすると 4m √ k 222 = 4π T= @ +α! 単振動の振幅 m k 単振動の角振動数を とすると, 小球Bが振動の 中心を通過するときの速さと振幅の関係は. k Point 経経反合 ※反 レー S1, S スリ リッ リッ この 光 Point! ばねによる単振動の周期 ばねにつながれた物体の単振動の周期は T=2π m √ k T: 周期, m: 質量 k : ばね定数 衝突直後から小球Bがはじめて壁面に最も近づい たときまでに移動した距離は,小球Bがばねを最も 押し縮めたときのばねの自然の長さからの縮みと考え ればよい。その距離をXとして、衝突直後に小球B が水平右向きに速さ”で動き始めたときとばねを も押し縮めたときについて力学的エネルギー保存の v = Aw= A√ Am (上の+α!のの式を代入) m よって, A=20 √ k (第二

回答募集中 回答数: 0
物理 高校生

1番最後の問題は相対速度でも解けるんですか? 等速直線運動じゃないと相対速度は使えないとかありますか?

10 (1) Bは左向きに Bの μmgを受ける。 とすると、 運動方程式は μmg B ときの運動方程式を記せ。 a=-μg A ma= -μmg (3) しばらくして、等速度運動になった場合 の速さを求めよ。 2 1 公式よりv=v+at=vo-ngt... ① (2)Aは動摩擦力の反作用を右向きに受ける (赤矢印)。 AA とすると, Aの運動方程式は M=2.0[kg].0=30° のとき、 図2の曲線 のような実験結果が得られた。 なお、 図2の 斜めの点線は、時間t=0 のときの接線としg=10(m/s) とする。 (4) 動摩擦係数を求めよ。 (5) 空気の抵抗力の係数を求めよ。 (岐阜大 + 東京大) 012345 t[s] 図2 ③ やり に対 MAμmg ...② . A=umg M ②左辺 (M+m)A したがって, A の速度Vは V=At = μm gt 「してはいけ M (3)v=Vより vv-μgto=Hmg Moo Egto ∴. to= M μm+M)g 19 m (4)V=Atom+M Vo 3- を求めてもよい (5) Aに対するBの相対加速度は a=a-A=-m+M Vの方が計算しやす μg M A上の人が見れば の単純な運動。ただし、 てはその人が見た値で。 Aに対しては、 Bは初めでやってきて 加速度αで運動し、やがて止まる。 したがって Mul OF-²-201 1= 2 (m+M)g 別解 固定台に対する運動を調べてもよい。 x x = Vo x=voto+mato2 X x-A 右図より Ix-X として求められるが, 本解の方 X が計算が速く、 応用範囲も広い。 B vo S₁ S3 A S2 なめらかな水平面S, S. と鉛直面 S3 からなる段差のある固定台がある。 面 S2 上に, 質量Mの直方体AをS, に接す るように置く。 Aの上面はあらく その高 さは面Sの高さに等しい。 質量mの小物 体BとAの間の動摩擦係数をとし、重力加速度をgとする。 いま B を初速で水平面 S, 上から, Aの上面中央を直進させたところ, A は運動をはじめ,ある時刻 t 以後, 両物体の速さは等しくなった。 BがA上に達した時刻をt=0とする。 時刻to より以前の時刻におけ るBの速さは (1) で, A の速さは (2) である。 toは (3) で、 そのときの速さは (4) である。 また, BがA上を進んだ距離は (5) である。 (岡山大 ) する

回答募集中 回答数: 0