学年

教科

質問の種類

物理 高校生

物理の電磁気に関する問題です 出典:大阪大学(理系)2019 2枚目の写真にある問4について、解説では極板Dを移動しても電気量は変わらないため電荷の保存則を用いていますが、 ①「電気量が変わらないのはスイッチ1を切ったから」と言う解釈で良いのでしょうか? ②解説にある等... 続きを読む

22 2019年度 物理 〔2〕 以下のような,二種類の回路で起こる現象について考えよう。 お I.図1に示すように, 3枚の平行極板 A, B, D が置かれている。極板Aと極 板Bの位置は固定されており,極板Dは摩擦なく, 平行を保ったまま極板に NATURE 垂直な方向に動く。極板D は, スイッチ S を介して電圧 V の直流電源,ス イッチ S2 を介して自己インダクタンス L のコイルとつながっている。 3100 最初に極板 D は極板 A-Bの中間に置かれており,極板D-Aと極板D-Bの 間隔はともにdで極板間は真空になっている。このとき極板 D-A,極板 D-B からなるコンデンサーの静電容量は両方ともにCであった。スイッチ SL とスイッチ S2 はともに開いていて,どの極板にも電荷は蓄積していないもの とする。極板 D の変位をx(x <d), 最初の位置をx=0とし、極板Bか ら極板Aへの向きをxの正の向きとする。極板の面積Sは十分広く, 極板 きとする。他の面積は十万 16 の厚みはd に比べて十分薄いものとする。 極板の端の影響は無視できる。ま た導線及びコイルの抵抗は十分小さく, 無視できるとする。 61923 idid: *** Č6 +6 Aとせよ。 33817343 AJAN B D L X 4 #5820 ASHXU 05-0400 (3₂/Stot 図 1 FV (1) 02 (>) m ようこ出店 narosa # (3)

回答募集中 回答数: 0
物理 高校生

(4)(5)が分かりません。 教えてください🙇‍♀️🙇‍♀️

図に示す点A,B,Cは, 点Oを中心とする半径 [m]の円周上にあり, |_∠AOB=∠BOC=60° である。 強さE[V/m]の一様な電場を, 半径 OA に垂直な向き円 の面に平行に与える。重力加速度の大きさをg[m/s2] とする。 est~ 3+ (DSX DATA ON JOMBO 358 .5+ [m] ***H [m]x C B 60° 0 60° A E (0)5 do [站学大飴命立 (0.0)Q (1) この電場の中で,正電荷q [C] を帯電させた質量の無視できる小球 X を, 円周にそって 点Aから点Bまで, 外力を加えてゆっくりと移動させる。このとき, 外力が小球Xに 8位 する仕事 W1 [J] を求めよ。 (0 (2) 点Aにおける電位を0Vとすると、点Bにおける電位VB [V] を求めよ。 OFFRO (3) 次に (1) の小球X を 経路B→O→A にそって, 点Bから点までゆっくりと移動さ 魚 せる。このとき、電場が電荷にする仕事を,B→0間で W2 [J], O→A間でW3 [J] とし, 3 BO→A間の全区間で W23 [J] とする。 W2, W's, W23 をそれぞれ求めよ。 (4) つづいて、負電荷-9 [C] を帯電させた小球 Yを長さの絶縁のよい糸に取り付けて, 糸の他端を点0に固定する。 この状態で, 小球Yを点Cで静かにはなしたところ、円 16周にそって CA間を往復した。このことから,」を求めよ。ただし、小球Yの質量を エンジ[kg]とする。 華 135 >CHƆAATBÁCIA A MBOOÀ ČIά*** (5) (4) の小球Yの運動において,点Bを通過する瞬間の速さ [m/s] を求めよ。 来 ASS

回答募集中 回答数: 0
物理 高校生

(2)の問題です。 赤線の2πx/16とはどういうことでしょうか? 自分で調べた結果、 y=Asin2πx/λ というものが出てきましたが、よくわかりません。 y=Asinωtならわかるのですが、、、 ご教授よろしくお願いします。

解説 (1) 図か 波が生じている。 周期 T = 0.40s, 波長 = 2.0m²である。 波の速さをv[m/s] として, 発展例題30 正弦波の式 物理 図のような正弦波が, x=0を波源として, x 軸の正の向きに進行している。 実線の波形から 最初に破線の波形になるまでの時間は, 0.10s であった。 実線の状態を時刻 t=0s とする。 (1) 波の伝わる速さ, 周期, 振動数を求めよ。 (2) t=0sにおける波形を式で示せ。 (3) x=0mの媒質の変位y 〔m〕 , 時刻 t[s] を用いて表せ。 指針 正弦波の波形や, 単振動をする媒質 の変位は,いずれも sin を用いた式で表される。 それぞれの式は、波の波長や周期振動のようす をもとにして考えることができる。 「解説」 (1) 波は 0.10s間に2.0m進んで 2.0 おり,速さは, 0.10 図から, 波長 入=16mなので, 周期Tは, T=1_16 V 20 振動数fは, = 0.80s f: V= = 1 T 1 0.80 =20m/s 1.3Hz LIEKS (2) 図の波形において, 1波長分 (入=16m) はな れた位置どうしでは位相が2ヶ異なり、 t=0の とき,x=0の媒質の変位はy=0 なので,位置 0 -0.20 -= 1.25 2 1 10 -1 -2 y〔m〕 I 2 1/ Y 10 進む向き I 1 エ mo8-04 (1) 発展問題 356 1 20 5 TCX 8 *[m〕 PE TXC x での位相 (sinの角度部分)は,2- x 十 2x 1/6 = 480 と表される。また, x=0から x>0 に向かって まず波の山ができており, 波の振幅が2.0m な ので,求める波形の式は, y=2.0sin- WITH TH (3) 媒質の振動では1周期 (T= 0.80s) 経過する と位相が2ヶ進み, x=0の媒質の変位は,図か ら,t=0のときにy=0 なので、 時刻におけ 0.80 る位相 (sin の角度部分) は, 2- = 2.5t と 表される。また,x=0の媒質は,t=0から微 小時間後に負の向きに動くので、求める変位y TEST y=-2.0sin2.5mt の式は, 139

回答募集中 回答数: 0