学年

教科

質問の種類

物理 高校生

この問題の(4)で(ΔB/B)^2の項は無視してるのにΔB/Bの項は無視していないのはなぜですか?

133. <ベータトロン〉 時間変化する磁場による荷電粒子の加速について考えよう。 図のように、原点Oを通り互いに直交するx軸, y 軸, z軸をと る。 AB (1) 等速円運動する荷電粒子の速さを求めよ。 2軸の正の向きに一様で時間変化しない磁場が加えられてお り,その磁束密度の大きさをBとする。この磁場中に質量 m, 電荷 g (>0) の荷電粒子を入射したところ,xy 平面上で原点O を中心とする半径rの等速円運動をした。 y m x v 荷電粒子の円運動は,半径rの円形コイルを流れる電流とみなすことができ,円形コイル を貫く磁束はBで与えられる。このことを用いて, 磁場を時間変化させたときの荷電粒 子の運動について考える。ただし,この電流がつくる磁場は無視できるとする。円形コイル 内部と円形コイル上の磁束密度の大きさを時間とともに一様に増加させる。増加を開始して から微小時間 ⊿t 経過したとき,磁束密度の大きさは微小量⊿B (>0) だけ増加した。 なお、 (4)(5)では2つ以上の微小量どうしの積は無視して計算すること。 (2) 円形コイルに誘導される電場の大きさを求めよ。 闘 (3) 誘導された電場により荷電粒子の速さは増加する。 その理由を述べ, 速さの微小な増加 量⊿v を求めよ。 *(4)磁場の増加により円運動の半径は変わらないと仮定して,荷電粒子にはたらくローレン ッカの大きさと遠心力の大きさを計算し,ローレンツ力は遠心力より大きいことを示せ。 したがって,磁束密度を一様に増加させると軌道が円からずれる。 元の円軌道を保つには, 磁束密度の増加量を一様ではなくすればよい。 このとき,円形コイル内部の磁束密度の大き さの平均値をĒとすると,円形コイルを貫く磁束は2万で与えられる。微小時間⊿t経過 する間に, Bを微小量 4B 増加させ, 円形コイル上の磁束密度の大きさを⊿B'増加させたと ころ,もとの円軌道が保たれた。だだし、磁束密度の大きさはz軸からの距離と時間だけに 依存するものとする。 (8) AB4B' の比 AB AB' を求めよ。 〔22 大阪公立大〕

解決済み 回答数: 1
物理 高校生

(3)について Tc/Tbの意味を教えて欲しいです。(なぜこれが出てきたのか?という過程など…) (4)について なぜA→Dに要する時間がVsの速さでA→Eに要する時間と等しいのか教えて欲しいです。 また、これよりわかりやすい解説があるならば教えていただきたいです。🙇‍♀️

図のように,一定の速さ”で一様に流れる川に浮かぶ船 の運動を考える。 船は、静止している水においては一定の 速さ us (vs>u) で進み, また、瞬時に向きを自由に変えら れる。最初, 船は船着場 A にいる。 A から流れに平行に 下流に向かって距離 L離れた地点を B, A から流れに垂直 に距離 W 離れた地点をC, C から流れに平行に下流に離れ た地点をDとする。 船の大きさは無視できるものとする。 W (1)地点AとBを直線的に往復する時間 TB を L, us, ” を用いて表せ。 L→ (2) 船首の向きを, AC を結ぶ直線に対してある一定の角度をなすように上流向きに向 け、流れに垂直に船が進むようにして,地点AとCを直線的に往復する時間を W, us, v を用いて表せ。 (3)L=Wのとき,Tc を TB, us, o を用いて表せ。また,時間 Tc と TB のうち長いほ うを答えよ。 (4) 船首の向きを,ACを結ぶ直線に対し角度 0 (0>0) だけ上流向きに向けて地点 A から船を進めると,地点D に直線的に到着する。 その後,地点DからCに、流れに 平行に進み,地点Cに到着する。地点 A から D を経由し Cまで移動するのに要する 時間を W, US, 0, 0 を用いて表せ。 [東京都立

回答募集中 回答数: 0
物理 高校生

(1)の答えが何故sinでなくcosなのかが分かりません 教えてください🙇‍♀️

問題 25. 交流回路 (108) 交流の発生 CHOM 図のように, 磁束密度の大きさ B〔T〕 の一様な磁場中に,一辺の長さ (21〔m〕 の正方形コイル abcdを置いた。 このコイルは,辺bcの中点を通り辺 ab に平行な軸のまわりに回転するこ とができ,この回転軸が磁場と垂直に B b C N 物理 R f S なるように設置されている。 時刻 t = 0〔s) において,辺bcは磁場と平行で あり,cからbへの向きが磁場の向きと一致していた。 このコイルに抵抗値 R[Ω] の抵抗を接続し、 コイルを図に示した向きに一定の角速度 [rad/s〕 で 回転させた。 ただし, コイルの誘導起電力および抵抗を流れる電流は, a→b→c→d→efaの向きを正とする。 (I) 時刻において,辺ab に生じる誘導起電力はいくらか。 (2) 時刻において, コイル abcd全体に生じる誘導起電力はいくらか。 (3)時刻において, 抵抗を流れる電流はいくらか。 (4) 抵抗を流れる電流の実効値はいくらか。 (5)抵抗で消費される電力の平均値はいくらか。 <福岡大〉 解説 (1)0 <wt<〔rad〕のときに 2 ついて,コイルをad側から見て考えよう (右 図)。 辺ab は, 半径[m〕, 角速度w [rad/s〕 で回転しているので,速さはww [m/s] である。 時刻 [s] では, コイルが磁場方向からwt[rad〕 磁場に垂直な成分 lw wt wt lwcoswt a(b) N S d(c) a (b) |d(c) Iw 金 (3) だけ傾いているので,辺abの速度の磁場に垂直な成分はlwcoswt[m/s]で ある。 辺ab に生じる誘導起電力Vab 〔V〕 は, a→bの向きに生じ, 正なので, Vab=Wwcoswt・B・21=21wBcoswt[V〕 (2)(I)と同様に考えて,辺cdに生じる誘導起電力 Va〔V〕は, c→dの向きに生 じ,正なので, Ved=212wBcoswt[V] また,辺bcと辺adには誘導起電力は生じない。 したがって, コイル abcd

解決済み 回答数: 1