学年

教科

質問の種類

物理 高校生

共テ模試物理 丸が付いていますが、適当に解いたので理解していません。 分からないので教えてください。

問3 図3のように, 単スリットAと複スリットBおよびスクリーンを互いに平行 物理 に置き, 単スリットAの左側に単色光の光源を置いた。 破線は複スリットの垂 直二等分線であり,単スリットとスクリーン上の点を通る。複スリットBの スリット間隔をd, 複スリットBとスクリーンの距離をLとする。この装置を 用いてスクリーン上に生じる干渉縞を観察した。 このとき, 生じる干渉縞につい ての記述として最も適当なものを,後の①~④のうちから一つ選べ。ただし, d はLに比べて十分小さく,またスリットの幅も十分小さいものとする。 4 THESE 光源 ME 単スリットA 複スリットB ↑(ア) d 図 3 スクリーン (イ) ↑ 0 ① 単スリットA (ア)の向きにゆっくりと移動させると,スクリーン上の干渉 縞は (イ)の向きへ移動する。 ② 複スリットBをスクリーン側にゆっくりと移動させると, 点0の明るさは 明暗を繰り返す。 ③ 複スリット B をスクリーン側にゆっくりと移動させても, スクリーン上の 点 0付近の干渉縞の間隔は変化しない。 ④ 単スリットAをスクリーン側にゆっくりと移動させても、スクリーン上の 干渉縞の位置は変化しない。

回答募集中 回答数: 0
物理 高校生

緑のマーカーで引いているのがテストで間違えたところですべて分かりやすく解き方と解説お願いします🙇‍♀️ 今日中に答えてくれると嬉しいです!!! 宜しくお願いします!!!

p²-v₁² = ( 4 【選択肢】 (ア) votax いものや、不正をした (4) 3.72x106-2.5x105 37.2×105-2.5×101 12.5 1年物理基礎 1 文字,ox,a, を使って、以下の加速度運動の3つの公式をすべて書きたい。 次の文中の (①)~( に当てはまる文字式を,以下の選択肢 (ア) (カ)のうちから1つずつ選び記号で答えよ。 1つめの公式は、セー (① (3) となる。 (2) 5.1+3.56 =8,66÷8.7 右向きに 2.0 いないものは受け付 34.73.47×10 3.5 図は ラフの接線である。 次の各問に答えよ。 Tox soubun in 16.0-40 4,0-2,0 (イ) Dotat (15) vot+at² (I) vo+at² (オ) 2at (カ) 2ax 以下の例にならって、有効数字の桁数に注意して、次の(1)~(5)の測定値を計算せよ。 足し算引き算) の有効数字】 計算結果を、測定値の末位が最も高い数字に合わせて四捨五入します (991) 23.45+5.6=29.05 29.1 ko 5.0 9.0 6.0m15 で,2つめの公式は、y= (1) 2.6+1.6 (3) 8.5+4.5 = 13.0 (4) 4.20.6 = 3.6 42 3 以下の例にならって、有効数字の桁数に注意して,次の(1)~(5)の測定値を計算せよ。 (1) 3.2x102+2.5x102 (2) 4.75x 10³ +2.7x 10¹ (3) 5.1×10^-2.4x 10 (5) (6.0×10)×(2.5x102) 5 左向きにも (1) 時刻 20sから4.0s の間の、物体の平均の速度はいくらか。 (2) 時刻 2.0sにおける瞬間の速度はいくらか。 b 12.0 2,0 12,0 想文コンクールに応 。。 = 6.0 から 5.0t….30 (55) (②)で、3つめの公式は、 の表紙をつけて提出 4.75 -20=10+5.00 -5.00-10+20 -5.00=30500y9.0 to bo やか課題考査ⅡI 45 6.0 30 15,00 15×10. x[m]と時刻 [s)との関係を表している。 図中の直線は、 時刻 20sにおけるグ 軸上を運動している物体の位置 4,75 27 31.05 2 x [m) ↑ 16.0 12.0 9.0 (+)31-75×10² 4.0 1.01 0 5枚(1 3.175×100 0.76 314 4 (5) 4.20.76 = 3.4434 Vi Vo+at V1.0.0,50 2,0 1,0410 2.0 品 5 次の各設問に答えよ。 ただし, ベクトル量の答え方に注意せよ。 --+(214-0) (43,910) (1) 一定の速さ5.0m/sで直線上を走るとき, 9.0s間に進む距離は何mか。 9.0-40 32:50 (2) 静水の場合に速さ5.0m/sで進む船が, 速さ 1.0m/sで流れる川を下流から上流に向かって進んでいる。 岸から見た船の速度はいくらか。 (3) 直線上を右向きに速さ1.0m/sで歩いているA君から, 左向きに速さ5.0m/sで走っているB君を見たときの相対速度 10mls を求めよ。 神速度(Vo) -5.0-(+10) Vo = -5.0-1.0 = -6.0% 左向きに 6.0m/s 6.0m² V (4) 直線上を右向きに速さ10m/sで進んでいた物体が、一定の加速度の運動を始めて、 5.0s後に左向きに速さ20m/sと なった。 この間の加速度を求めよ。 Vo Dr 七 ↓ (5) 物体がx軸上を初速度1.0m/s, 一定の加速度 0.50m/s² 2.0s間運動すると、速度はいくらになるか。 符号を付け て答えよ。 12.7 (40問) 「6 図は、 Aは原点 ただし, 1 1 2 3 4 t(s) (1) グ (2) 小 (3) 時 小 の (4) (5)

回答募集中 回答数: 0
物理 高校生

(5)番なんですがN>=0は分かるのですがそれ以降が分かりません。わかりやすく教えて欲しいです。

31 鉛直方向への物体の単振動 ばね定数kのばねを鉛直に立て, 床に固定する。 (1 ねの上端に質量mの薄い板Bを取りつけ,板の上 00 に質量 M の小球 A を乗せると,自然長からだけ縮 B- んで静止した。このつりあいの位置をx=0 として, 鉛直上向きにx軸をとる。 また, 重力加速度の大きさ をg とする。 (1) ばねの縮みαを求めよ。 & DUH 次に板 B をつりあいの位置から、さらに6(>0) だけ下げて静かに放すと, AとBは一体となり単振 動した。 (2) 小球 A と板Bの単振動の周期を求めよ。 (3) 位置 x における,小球Aの速さを求めよ。 (4) 小球 A が板 B から受ける垂直抗力N をxの関数として表せ。 MOO AUSSE 出題パターン (5) 小球Aが板 B から離れないの条件を求めよ。 516100-2 .. a= 折り返し点は速さ0で静かに放し た x = - b と,振動中心に対して対 称の位置にあるx=bo 自然長はx=a の点。 102 漆原の物理 力学 解答のポイント! さぶ A,B間に働く垂直抗力をNとして, A, B それぞれの運動方程式を立て, N を求めAがBから離れる 垂直抗力N=0を用いる。 magn 下向きにとるこ 解法 (1) 問題文の図で,力のつりあいより, (M+m)g=ka M+m ① k 単振動の解法3ステップで解く。 (1+0) S** STE | 1 x軸は与えられている。 DRS STEP2 振動中心は、つりあいの(自a 位置x=0の点。 g Baiepm x1 (中) 0x a+ 上 Lau T-e ポイント!! 今後の式変形に,この式を フル活用することになる。 必ず向きを そろえる AV Spreeeeee da at, af Mg mg 図9-8 2000円 A k(a-x) B IN 「縮み a-x (1+0)S STEP3 図9-8のように, 加速度をα, A,B間の垂直抗力をNとす ると,図9-8 より A,Bの運動方程式は, (1+n)S

解決済み 回答数: 1
物理 高校生

(シ)で直列(問題の図4)と並列(問題の図5)の時のコンデンサーに蓄えるエネルギーを比較しているのですが(シ)の解説で0<ω^2LC<2の時とあるのですがどうしてこの範囲になるのか分かりません。 ω^2LCが2より大きい値を取った時は考えないのでしょうか? 出典:難問題の... 続きを読む

Chapter 1 電磁気 Section 4 交流と荷電粒子の運動 192 例題 35 交流回路② 以下の空欄(ア)~(シ)にあてはまる式または語句を解答用紙の該当す る欄に記入せよ。 また, 空欄(a), (b)にあてはまる答えを図3から選び、 その番号を解答用紙の該当する欄に記入せよ。 る。したがって、同じ電圧振幅 V を発生する交流電源に接続するとき, コンデンサーが蓄えるエネルギーの最大値は直列接続の場合( [J] であり, 並列接続の場合(ク) 〔J〕 である。 また, コイルが蓄え るエネルギーの最大値は、 直列接続の場合は) [J] であり,並列 接続の場合は) [J] である。 並列接続の場合, コンデンサーが蓄 えるエネルギーの最大値とコイルが蓄えるエネルギーの最大値が等 しくなるのはω=)〔rad/s〕のときである。 コンデンサーから放射される電磁波の強さは, コンデンサーが蓄積 するエネルギーに比例するとしよう。 交流電圧源の電圧振幅 Vo を一 として、交流電圧の角振動数を変えて電磁波の放射エネルギーを大 きくしようとするとき, コイルとコンデンサーの直列接続と並列接続 とを比較するとシン) 接続のほうがより強く電磁波を放射すると考 えられる。 図1に示すように, 電気容量がC〔F〕] のコンデンサーを角振動数ω [ rad/s ] の交流電圧を発生する電圧源に接続する。 回路には時間を [s] として,図2に示すようなIo cos wt 〔A〕 の交流電流が図1の矢印の 向きを正として流れる。 t=0s でコンデンサーの電圧は0Vで,コンテ ンサーの蓄える電荷はOCであった。 交流電流が流れることによって 時刻に図1のコンデンサー上側の極板が蓄える電荷は) [C]で あり、コンデンサー両端の電圧は() [V] である。この交流電圧 はコンデンサーの極板間に,時間的に変動する電界を作る。 変動する電界付近には, 変動する磁界が発生する。 図2の0<t< / 200の間では,コンデンサーの極板間の電界の向きは図3の(a) の向きである。この向きの電界の時間変化率は0<t < π/20 の間で正 であり、この間に変動する電界は、コンデンサーの上側極板に流れ込 む電流が,そのままコンデンサーの極板間を流れるものと考えた場合 に発生する磁界と,同じ向きに磁界を発生する。 したがって,0<t <π/20の間にコンデンサー周囲に発生する磁界は図3(b)の向 きである。 この磁界の周りには、変動する電界がさらに発生する。 こ うして、コンデンサーの周りには、次々と変動する磁界と電界が発生 し、周りの空間に伝えられる。 これが電磁波である。 光の速さをc[m/ s] とすると,このコンデンサーから放射された電磁波の波長は(ウ) [m〕 と計算される。 コンデンサーから電磁波を発生させるとき, コンデンサーとコイル を接続した回路がよく用いられる。 電気容量C [F] のコンデンサーと 自己インダクタンスL [H] のコイルを,図4のように直列接続する場 合と,図5のように並列接続する場合を比較しよう。図4の直列回路 I cos at 〔A〕 の交流電流が流れるとき, 電圧源が発生する電圧の振 幅は国〔V〕である。 一方, 図5の並列回路のコイルとコンデンサー Vosin at 〔V〕 の電圧を加える場合には, コンデンサーに流れる電流 の振幅は(オ) [A], コイルに流れる電流の振幅はカ) [A] であ 図 1 考え方の キホン 電流 415 図4 電流 [A] Io 0 -10 2ω ② 3 w2w 図2 図5 2x 時間 t(s) コンデンサー -0 電流 図3 (同志社大) 交流で電圧や電流を求める場合、 普通は,振幅(最大値) と位相を 別々に処理すればよい。 振幅はオームの法則から求め、位相はπ/2 だけ進むとか遅れるとかを判断し, cot+π/2とかwt-π/2とかとすればよい。ただ この問題では、設問の順序からみて、 微分や積分を用いて解答するのが、出題者 の意図であろう。 1-4 交流と荷電粒子の運動 電磁気 193

解決済み 回答数: 1