学年

教科

質問の種類

物理 高校生

物理基礎の質問です 図aでは運動方程式、図bでは力のつりあいの式を立ててますが、なぜ運動方程式の物体Bについての式ではma=T-mgでT=mg▶︎ma=mg-mg▶︎ma=0にならないんですか? T=mgでつりあってるんじゃないんですか?

mのおもりBをつるした。 物 体Aと斜面との静止摩擦係数 μo, 動摩擦係数をμとして,次の問いに答えよ。 m B (1) 0 0 つまり板を水平としたとき, Bは下降した。 その加 速度の大きさを求めよ。 (2)001 のとき,Aが斜面下方へすべり始めた 。 M を求めよ。 (3)001のときのBの上昇加速度の大きさを求めよ。 「解説 (1) 図a で, 糸は軽いので, 両端の張力Tは等しい。 Aは「もうすべっている」 (p.41)ので, 動摩擦力μNを受ける。 〈運動方程式の立て方> (p.56)で. STEP Aは右向き, Bは下向きの 同じ大きさの加速度をもつ。 STER 2 図のように軸を立てる。 STEP 3 Aについて、 A μN a1 : 運動方程式: Ma1= +T-μN...... ① v : 力のつり合いの式: N = Mg... ② Bについて X: 運動方程式 ma」= +mg-T ③ ①+③より, N YA -X B 必ず 等しい Mg a₁ mg Tを消すためのおき, (M+m)a = mgμN まりの式変形♪ ②を代入して,aについて解くと, m-μM a₁ g 答 M+m 図 a 1 と同じ向きの力は 正, 逆向きの力は負 →ナットクイメージ m→∞にもっていくと, ag つまり, Bの自由落下に近づく 第5章 運動方程式 | 59

未解決 回答数: 1
物理 高校生

物理の運動法での問題です。(6)の問題で赤で囲った部分がどういう変形をして出てきたのか分からないので教えて欲しいです。

運動方程式と束縛条件 次の文中の空間(1)~(6)にあてはまる式を記せ。 なめらかな水平面上に、8の角をなす。なめらかな斜面をもつ図のような台 (質量M)があ り、その斜面上に小物体(質量m)がのっている。 はじめ,台と小物体は滑りださないように 支えられている。また、図のように水平面上に工軸。 水平面上の固定点から鉛直方向に必 をとり、重力加速度の大きさを」とする。 支えを静かに離すと, 小物体と台はともに動きはじめる。 台の加速度の成分をA, 小物 体の加速度の成分をα, y 成分をb, 小物体が斜面から受ける垂直抗力の大きさをNとす ると, 台の方向の運動方程式は MA= (1) 小物体の運動方程式は ① ma- (2) mb= (3) ③ となる。 また、小物体が台の斜面に沿って滑り下りることを考慮すると, A, a, b, 8の間に、 (4) ....... ④ の関係が成りたつことがわかる。 ①〜④により,小物体が受ける垂直抗力の大きさはM, m, 0, g を用いて, N = __(5) と求められる。 また、はじめの小物体の高さ (水平面からの高さ)をんとすると, 小物体が動き始めてから 水平面に達するまでの時間tは,m, M, g, 6, h を用いて, t = (6) と求められる。 (同志社 25-

解決済み 回答数: 1
物理 高校生

至急!この問題の解法を教えてください🙇‍♀️

... 79.〈音波の性質> 図1上図のように原点Oにスピーカーを置き, 一定の振幅で, 一定の振動数の音波をx軸の正の向きに連続的に発生させる。 空気の圧力変化に反応する小さなマイクロホンを複数用いて, x 軸上 (x>0) の各点で圧力の時間変化を測定する。 ある時刻において,x軸上(x>0)の点P付近の空気の圧力か xの関数として調べたところ、 図1下図のグラフのようになっ た。 ここで距離 OP は音波の波長よりも十分長く,また音波が存 在しないときの大気の圧力をする。圧力が最大値をとる x=x から, 次に最大値をとる x=x までのxの区間を8等分 X1,X2, ...,と順にx座標を定める スピーカー X3 X4 X5 Poss XoX1 X2 点P付近の拡大図 図1 から x までの各位置の中で, x軸の正の向きに空気が最も大きく変位している位置, およびx軸の正の向きに空気が最も速く動いている位置はそれぞれどれか。 次に点Pで空気の圧力の時間変化を調べたところ、図2のグ P4 ラフのようになった。 圧力が最大値をとる時刻t=to から, 次に最大値をとる時刻t=ts までの1周期を8等分した、 た,..., と順に時刻を定める。 からまでの各時刻の中で, x軸の正の向きに空気が最も 大きく変位しているのはどの時刻か。 図3のように,原点Oから見て点Pより遠い側の位置に,x軸 に対して垂直に反射板を置くと,圧力が時間とともに変わらず常 po となる点がx軸上に等間隔に並んだ。 (3)これらの隣接する点の間隔dはいくらか。なお,音波の速さ をcとする。 Pos ta ta ts to tit tet ts t 図2 図3 反射板 (4) (3)の状態から気温が上昇したところ, (3) で求めたdは増加した。 その理由を説明せよ。

回答募集中 回答数: 0
物理 高校生

fbc=ma になる理由が分かりません... fbc=5ma になると思ったのですがなぜでしょうか…?

D 思考 179. 積み重ねた物体 図のように, 水平でな C めらかな床の上に, 質量がそれぞれ3m,2m, mの直方体の物体A, B, C, 積み重ねて置 かれている。 中央の物体Bにひもをつけて、 A 第Ⅰ章 力学Ⅰ この上面に乗り移り の大きさを 定の大きさの力で右向きに引く。 AとBとの間, BとCとの間の摩擦係数は等しいとし, 静止摩 擦係数をμ, 動摩擦係数をμ'とする。 また, 重 力加速度の大きさをg とする。 B ひもを大きさ T, の力で引いたところ,A, B, Cは一体となって運動した。 ただし、小物体 (1) 物体の加速度の大きさαを求めよ。 CDの加速度を までの時間を を求めよ。 距離を求めよ。 (関西 h (2) AとBとの間にはたらいている摩擦力の大きさ∫AB と,BとCとの間にはたらいて いる摩擦力の大きさ/Bcをそれぞれ求めよ。 (3) 静止していた状態から, 水平距離 dを進んだときの物体の速さを求めよ。 (4) ひもを大きさ T2 の力で引いたところ,BとCは一体となって運動したが, AとB との間にはすべりが生じた。 T2 はいくらより大きくなければならないか。 (5) ひもを大きさ T3 の力で引いたところ, AとB,BとCとの間にそれぞれすべりが 生じた。3つの物体は,それぞれ重なりあう物体と面を接して運動している。このと きの,A,B,Cの加速度の大きさをそれぞれ求めよ。 思考やや難 180. 重ねた物体の運動 図のように, 水 平面上に質量Mの台車を置き, その上に質 量mの物体をのせた。台車と水平面, 斜面 物体 1台車 (静岡県立大改)

解決済み 回答数: 1
物理 高校生

この質問に答えて。問題はコメントにある。

4 (1)Ua= Cr(p-pal) Vo + Cop(V-Va) R (5) 圧力: 温度: -p (V-Va) U₁ = Capo (V - V₁) + Cv (p-po) V [考え方 R - po (V - Vo) から熱が 変化と (2) 考え方参照 考え方 (1) 気体の内部エネルギーの増加は、外 から与えられた熱量と仕事の和に等しい。 圧力po. 体積Voのときの温度をTとし,p, Vのときの温度をTとする。 また,過程Aで, P.Voのときの温度をT,過程で、po. Vのときの温度をT』 とすれば、次の4つの 状態方程式が成り立つ。 PoVo=RTo PV=RT pV = RT poV = RTs)..... 過程Aでの内部エネルギー増加U』は、 Us=Cr(Ta-To) + C, (T-TA) -p(V - Vo) PV の関係が y= である。 はじめの の圧力〔 1x ゆえに、 ① P = ここで, logio ~ ② ②式に①式から得られる To TA, T を代入 すると, Cr(p-po) Vo +Cpp(V-Vo) U₁ = R さらに, -0.0 -p (V - Vo) 過程Bでの内部エネルギーの増加 UB は, UB = C, (Ts-To-po (V-Vo) + Cv (T - TB) なので、 log10 対数法則 [10] ③れば せ ③式に①式から得られる To T, T を代入の?p= すると, UB = Cppo (V-Vo) + Cr(p-po)V R -po(V-Vo) (2)過程A, B のどちらでも,最初と最後の状 態は同じなので, UA = UB となる。 よって、 ② ③式を代入すると, Cp(p-po) (V-Vo)-Cr(p-po)(V-Vo) となり, R =(p-po) (V-Vo) Cp-Cv=R 240 定期テスト予想問題の解答 すなわち 次に ヤルルの 1 > 273 ゆえに、 (補足) を求める y=1 と表す。 対数関数 k loga

解決済み 回答数: 2
物理 高校生

この質問に答えて!

4 (1)Ua= Cr(p-pal) Vo + Cop(V-Va) R (5) 圧力: 温度: -p (V-Va) U₁ = Capo (V - V₁) + Cv (p-po) V [考え方 R - po (V - Vo) から熱が 変化と (2) 考え方参照 考え方 (1) 気体の内部エネルギーの増加は、外 から与えられた熱量と仕事の和に等しい。 圧力po. 体積Voのときの温度をTとし,p, Vのときの温度をTとする。 また,過程Aで, P.Voのときの温度をT,過程で、po. Vのときの温度をT』 とすれば、次の4つの 状態方程式が成り立つ。 PoVo=RTo PV=RT pV = RT poV = RTs)..... 過程Aでの内部エネルギー増加U』は、 Us=Cr(Ta-To) + C, (T-TA) -p(V - Vo) PV の関係が y= である。 はじめの の圧力〔 1x ゆえに、 ① P = ここで, logio ~ ② ②式に①式から得られる To TA, T を代入 すると, Cr(p-po) Vo +Cpp(V-Vo) U₁ = R さらに, -0.0 -p (V - Vo) 過程Bでの内部エネルギーの増加 UB は, UB = C, (Ts-To-po (V-Vo) + Cv (T - TB) なので、 log10 対数法則 [10] ③れば せ ③式に①式から得られる To T, T を代入の?p= すると, UB = Cppo (V-Vo) + Cr(p-po)V R -po(V-Vo) (2)過程A, B のどちらでも,最初と最後の状 態は同じなので, UA = UB となる。 よって、 ② ③式を代入すると, Cp(p-po) (V-Vo)-Cr(p-po)(V-Vo) となり, R =(p-po) (V-Vo) Cp-Cv=R 240 定期テスト予想問題の解答 すなわち 次に ヤルルの 1 > 273 ゆえに、 (補足) を求める y=1 と表す。 対数関数 k loga

未解決 回答数: 0