学年

教科

質問の種類

物理 高校生

これの(3)を教えて頂けませんか🙏 2枚目の写真が答えなのですが、解説を読んでもよくわかりません、、、

6 [2014 東京大] 【35分】 図1に示すように、水平から角度を なすなめらかな斜面の下端に, ばね定数 んのばねの一端が固定されている。斜面 は点Aで水平面と交わっており, ばねの 他端は自然の長さのとき点Aの位置にあ るものとする。 図2に示すように,質量 mの小球をばねに押しつけ, 斜面にそっ て距離xだけばねを縮めてから静かに手 をはなす。 その後の小球の運動について, 次の問いに答えよ。 ただし, 重力加速度 の大きさをgとする。 また, 小球の大き さとばねの質量は無視してよい。 (1) x=x のとき, 手をはなしても小球 は静止したままであった。 このときの x を求めよ。 (2) 手をはなしたのち, 小球が斜面から 飛び出し水平面に投げ出されるための の条件を, k, m, g, 0 を用いて表せ。 「ひゃん。 (3) x=3x) のとき, 小球が動きだしてから点Aに達するまでの時間を求めよ。 次に,(2) の条件が成立し小球が投げ出された後の運動を考える。 小球は点Aから速さ で投げ出されたのち, 水平距離s だけ離れたところに落下する。 点Aでの速さが一定 の場合は,0=45°のとき落下までの水平距離が最大になることが知られているが,今回 の場合は,0によって”が変わるため, s が最大となる条件は異なる可能性がある。 次の 問いに答えよ。 なお,必要であれば、表1の三角関数表を計算に利用してよい。 S 表 1 (4) vをx,k, m, g, 0 を用いて表し、 xが一定 のとき, sが最大となる 0は45°より大きいか小 さいか答えよ。 (5) s をx,k, m, g, 0 を用いて表せ。 0 sin 0 cos o 0 sin 0 cos o x m A 図1 A 図2 35° 10° 15° 20° 25° 30° 40° 0.17 0.26 0.34 0.42 0.50 0.57 0.64 0.71 0.98 0.97 0.94 0.91 0.87 0.82 0.77 0.71 45° 50° 0.77 0.64 20.57 20.50 0.42 0.34 55° 60° 65° 70° 75° 80° 0.82 20.87 0.91 20.94 20.97 0.98 0.26 0.17 2mg のとき,表 (6) x=- k に示した角度の中から, sが最も大きくなる 0 を選んで答えよ。 (7) x を大きくしていくと, s が最大となる 0 は何度に近づくか。 表に示した角度の中 から選んで答えよ。

解決済み 回答数: 1
物理 高校生

(4)について質問です。 ベクトル図で考え、tanθ=R(ωC-1/(ωL))と逆にして書いたのですが、これは正解なのでしょうか? ωCV_0とV_0/ωLの大小が分からないので正解だろうと予想しましたが、 不安だったので質問しました。

138. 〈RLC 並列回路〉 10) 図のような, 交流電源, コイル, コンデンサー, 抵抗からなる 回路について考える。 交流電源の交流電圧の最大値を Vo〔V〕, 角 周波数をw [rad/s〕, コンデンサーの電気容量をC[F], コイルの 自己インダクタンスをL [H], 抵抗をR [Ω], 円周率をとする。 電流は図の矢印の向きを正とする。 また時刻 t〔s〕において交流 電源の電圧 V〔V〕はV=Vosinwt, 交流電源から流れる電流は I〔A〕であるとする。コイル, コンデンサー,抵抗に流れる電流 をそれぞれ IL 〔A〕, Ic〔A〕, IR〔A〕 とし, その最大値をそれぞれ ILo〔A〕, Ico〔A〕, Iko〔A〕 とす る。十分な時間が経過しているとして,次の問いに答えよ。 (1) 電流の最大値 Ito, Ico, Iro をそれぞれ Vo, w, C, L, R の中から必要なものを用いて表せ。 (2) 時刻 t において, 流れる電流I, Ic, In をそれぞれ Ito, Ico, IRo, w, tの中から必要なも のを用いて表せ。 (3) 電流 I を I, Ic. IR を用いて表せ。 (4) 0 [rad〕を電圧(Vの位相に対する電流の位相の遅れとして, I を Vo, w, C, L, R, t, Qを用いて表せ。また, tanθ を w, C, L, R を用いて表せ。 次の三角関数の公式を用いて もよい。 asinx-bcosx=√a²+busin (x-9), cos0= a √a² +6² [ 10 大阪教育大 〕 9 IL VIC L C b √a² + b² sing= VIR (5) 図の回路のうち, コイル, コンデンサー, 抵抗からなる並列回路のインピーダンス Z〔K〕 をw, C, L, R を用いて表せ。 (6) (5)のインピーダンスZが最大となるような角周波数 wo [rad/s] を求めよ。 [20 福井大

解決済み 回答数: 1
物理 高校生

4の問題でこのようにしてはいけない理由をお願いします🙇‍♀️

2 /図のように, 半径の細い円形リングが鉛直面内にある。 その頂点を A. 最下 点をBとする。 このリングに, 小さな穴の開いた質量mの小球Pを通し, リン グに沿って運動できるようにした。 リングの中心を0とし.鉛直下方から測っ たPの角度を0とする。 重力加速度の大きさをgとして,以下の問いに答えな さい。ただし,小球Pとリングの間の摩擦は無視できるものとする。 また、必 要があれば三角関数に関する次の公式および近似式を用いてよい。 なお, 角度は ラジアンを単位として表す。 sin (a + β) = sin a cos β + cos a sin B cos (a + β) = cos a cos β - sin a sin β lal < 1 のとき, sin α = α, cosa ≒ 1 A O B 図 はじめ、リングは固定されていた。 リング mg. mrw² = mg case, ing gcasOr W mrw² = [ar] W √ geaso, r 問1 リングの接線方向の小球Pの加速度をaとし, 8が増加する向きを加速 度の正の向きとする。 リングの接線方向の小球Pの運動方程式を, m,g, を,g,r, 0, のうち必要な記号を用いて表しなさい。 次に,リングを一定の角速度」 で軸AB のまわりに回転させた。 小球Pの位 置を調節したところ,ある角度=0(0<0, 1)を保った。 問5 小球Pがもつ力学的エネルギーをm,g,r, 0, のうち必要な記号を用

解決済み 回答数: 1
物理 高校生

丸のところ、逆じゃないんですか?sinが大きくなる方が最大値だと思ったのですが。

例題158 三角関数の最大 最小 〔5〕・・・sin0 と cose の対称式 0≦0<2πのとき, 関数 y = sin20-2sin0-2cos0+1 について (1) sin0 + cost=t とおくとき,yをtの式で表せ。 また,ものとり得る 値の範囲を求めよ。 (2) yの最大値,最小値,およびそのときの0の値を求めよ。 思考プロセス 例題 157 |対称性の利用 y = sin20-2sin0 - 2cos0+1 =2sin Acos0-2 (sin0+cos 0)+1 sin 0 と cos 0 の対称式 解(1) y=2sinocose-2(sino+cos)+1 例題 131 置き換えた の範囲に注意 Action》 sin 0, cose の対称式は, t = sin0+ cos0 と置き換えよ ここで, sin+cost = t とおき, 両辺を2乗すると t²-1 = sin Acose 2 1+2sin@cosa=tより t-1. 2 よって また 0≦0 <2πであるから -√2 ≤t≤√2 π 4 y = 2. t = sin+cos0=√2sin(6+4) sin0+cos0=tとおく (2)y=-2t=(t-1)2-1 右の図より, y は ① の範囲において t=-√2 のとき 最大値 2+2√2 t=1のとき 最小値-1 0≦0 <2πより, π 9 ≤0+ 4 4 - 2t+1=t² - 2t したがって .... t=1のとき sin (++)1/17 sin(0+1) 0 = 0, TC 2 であるから 5 t=-√2のとき sin(6+4)-1より= 4 2 √20 2+2√2 √2 り0=0, 2 5 0 = πのとき 最大値 2+2√2 のとき 最小値-1 π 2 sin Acos0=| π y=(t) 2倍角の公式 yA 1 (sin + cos0)² = sin20+2sinAcos0 + cos' f = =1+2sin@cost √√2 π 10+ 10+ の式 π 9 = 0 + < ²x kh 4 本より -1 ≤ sin(0+4) ≤1 −√2 ≤ √ 2 sin(0 + ²) ≤ √2 π 4 1 π 4 より x || 3 --- π 3 π 4 4 ・π

解決済み 回答数: 1
物理 高校生

物理の円運動についての質問です。 (1)(a)で、速さvを求めるときに解説では力学的エネルギーの保存の式を立てていますが、これを運動方程式mv^2/r=mgsinθで求めようとすると正答になりません。mgsinθが向心力ではないからでしょうか。 また、解説の図aの点線矢印m... 続きを読む

B....... 2 51. 〈半球内での物体の円運動〉 内半径Rの半球が,図1のように切り口を水平にして固定半球 されている。座標軸は,半球の中心Oを原点とし, z軸を鉛直 方向に, xy平面を半球の切り口にとる。 この半球の内面に接 して運動する質量 mの小球について考える。ただし, 小球と 半球の内面との間の摩擦および小球の大きさは無視できるもの とする。重力加速度の大きさをgとして,次の問いに答えよ。 (1) 図2のように, 小球が半球の内面に接して xz 平面内を運動 する場合を考える。 (a)z軸となす角度が0の位置から小球を静かにはなすとき, 角度0の位置における小球の速さ”および加速度の進行 方向成分αの大きさを, R, m, g, 0, 0 の中から必要な ものを用いて表せ。 (b) 6 が十分小さいとき, 往復運動の周期 T を, R, m, g の 中から必要なものを用いて表せ。 なお、 この場合, sin00 が成りたっているものとする。 (2) 図3のように、小球は半球の内面を半径rの円を描いて一 定の速さで水平に回っている。 (a) このときの円運動の角速度 1 を R,m,r, g の中から i/ Fi .) ... x 小球 m R MOOER 図 1 AZ 10 Oo` 0 図2 AZ lo 応用問題 R m x x

解決済み 回答数: 2