学年

教科

質問の種類

物理 高校生

⑵の②の式が−q3になる理由がわからないです。

発展例題42 コンデンサーを含む複雑な回路理 STS TI 図の回路において, Eは内部抵抗が無視できる起電力 9.0 CA Vの電池, R1, R2 はそれぞれ 2.0kΩ, 3.0kΩの抵抗,C1, Co, C3はそれぞれ 1.0μF, 2.0μF, 3.0μFのコンデンサーで ある。はじめ,各コンデンサーに電荷はなかったものとする。 (1) 十分に時間が経過したとき, R」を流れる電流は何mAか。 (8) 各コンデンサーのD側の極板の電荷は何 μC か。 (1) コンデンサーが充電を完了し 指針 ており、抵抗には定常電流が流れる。 (2) 電気量保存の法則から、各コンデンサーに おけるD側の極板の電荷の和は0である。 解説 (1) R1, R2 を流れる定常電流を ELAN. I= 9.0 2.0+3.0 -=1.8mA とすると. (Iの計算では,V/kΩ=mAとなる) (2) 図のように。 各コンデンサーの極板の電荷 を Q1, 92, 93 〔UC〕 とする。 はじめ各コンデンサ の電荷は0なので、 電気量保存の法則から, -9₁-92-93=00 R」 の両端の電圧は,C1, C の電圧の代数和に 等しく, R2 の両端の電圧は,C3, C2 の電圧の イロ 10 A 2.0kΩ +9₁ th CA 1.0 μF 91 SGUT 2.0×1.8= 1.8mA 九値を変化 3.0μF ER 3.0×1.8= + C₁ ACHIE C +93 91 93 1.0 3.0 93, 92 3.0 2.0 93 D 19. 電流 245 KA 発展問題 500 C D E1₁ R2 BUT FE C2 vag 3.0kΩ 92 +92 2.0µF ・B B NE 式 ②③は μC UF となる。 =V 式 ①,②,③から、 g1=4.8μC, Q2=8.4μC, Q3=3.6μC C1: したがって,-4.8μC, C28.4μC, C3-3.6μC ALGT

回答募集中 回答数: 0
物理 高校生

ケの解説のところに書いている図の点線の部分についてなぜ-q1ではなく+q1なのですか?教えて下さい。お願いします!

100, 2010, 30Ωの抵抗R,, Ry, R,, 電気容量 コンデンサーを含む画 図のな, 内部抵 ンサーC, Caに電荷はないと。 グスイッチ5,, Saからなる回路がある。 次の文の 流れる電流は(ア )Aで。 の3.0VのE, 値がそれ それぞれ, のC,, Cz, およ 19, 電 249 'S R, 100 5 1,0uF 2002 適切な数値を入れしよ。ただし, はじめ, コン A0E 極板A 'S R。 インを開いたままS,を閉じた。その直後にR,に 4.0F 300 ゥ V, その極板Aにたくわえられる電荷は( の両端の電位差は( )Vである。 エ )Cであ 多 40 |ケ V, C,の極板Aの電荷は( コ )Cとなる。 (12.三重大 改)→例題顔41· 42) 『口 問題 501 R, U==CV?=x(4.0×10-)×0.50"=5.0×107J (3) (カ) Szを閉じてから, 十分に時間が経過したとき, C,. Caには電流が流れない。 R2 の両端の電位差は(イ )と同じく, V: Ci OC A0'I (キ) C2 の極板間の電位差は, 並列に接続されている R, の両 端の電位差と等しい(図2)。 R, の両端の電位差 V3[V]は, A+Q V C。 I =1.5V 20 図2 V;=R,I;=30×- (ク) 極板Aは電位が高い方なので, 正の電荷をたくわえている。その 電荷をQ:[C]とすると, Q=CVs=(4.0×10-)×1.5=6.0×10“C (4) (ケ) Sz を開く前((3)の状態)で, C, の下側の 極板にたくわえられている電荷は負電荷であり, これを -Q[C]とすると, -Q=-C,Vz=- (1.0×10-)×1.0 =-1.0×10-6C Szを開き, S, を開いて, 十分に時間が経過したと きの C。の両端の電位差を1V[V]とする。図3の 破線で囲まれた部分の電荷の和は正なので, 各極 板の電荷を q.[C], 9:[C]とすると, 9:=C,V=(1.0×10-6)×1V 42=C,V=(4.0×10-)×1V 電気量保存の法則から, (3), (4)の各状態で, 図3の破線で囲まれた部 分の電荷の和は保存される。破線部分には -Q{[C], Q:[C]の電荷 があったので、 ①(4) Sz. S, の順に開い ており、図3の破線で目 まれた部分の電荷の和は、 (3)のときと等しく、 -Q+Q{=5.0×10*C である。また, S, を開い たとき, 抵抗 R, R,を 通じて、C, の上側の種 板と C。の下側の極板の 間に電流が流れる。十分 に時間が経過すると、 C, の上側, C。 の下側の種 板は等電位となり、 電流 が流れなくなる。このと き,C., C.の極板間の 電位差は等しく,両者は 並列接続になるとみなも 1b +q 92} 92 図3 0+,0-=D+'b (1.0×10-)×V+(4.0×10-9)×V=(-1.0×10-)+(6.0×10-) V=1.0V (コ) 極板Aは電位が高い方なので, 正の電荷をたくわえている。その 電荷 9.[C]は, 42=C,V=(4.0×10-)×1,0=4.0×10→C 別解)(コ) コンデンサーの並列接続では, 電荷が電気容量の比に 分かれる。-Q/+Q{=5.0×10-Cの電荷が1:4に分かれ,求め る電荷は, 4.0×10→Cとなる。 °2 501. 非直線抵抗とコンデンサー 解 (1) 8.8W (2) 1.27+1.1/=6.0 (3) -4.0×10“C (4) 7.29 指針 Sを閉じた直後, コンデンサーCは抵抗0 の導線とみなすこと ができ, 電球Lと抵抗 R, の並列接続に, R,と R,の合成抵抗が直列接 続されていると考えられる。十分に時間が経過すると、, Cには電流が流 れこまなくtr

回答募集中 回答数: 0