学年

教科

質問の種類

物理 高校生

物理基礎です。 青マーカーの所なんですけど このとき運動エネルギーは何故0になるのですか? vが不明な場合は0にするということでしょうか?

EXERCISE 例題 17力学的エネルギーの保存 ばね定数98N/mのばねに質量 2.0×10-2kgの物体を押しつけ, ばねを0.10m縮めた点Aから静かに手をはなすと, 物体はばね からはなれ,曲面を点Cまで上がった。 水平面AB, および曲 面BCD はなめらかで摩擦はないものとして,次の問いに答え よ。 ただし, 重力加速度の大きさは9.8m/s2 とする。 (1)点Bでの物体の速さ V[m/s] を求めよ。 (2) 水平面 ABからの点Cの高さH[m] を求めよ。 |ばね定数 |98N/m [000000 +10 ▶54, 57 D 10m (3) ばねを x〔m〕 縮めた点A'から静かに手をはなしたとき,物体の最高到達点は,水平面ABからの高 さが10mの点Dであった。 x を求めよ。 ここが ポイント ◆解法 ◆ (1)点Aと点Bで力学的エネルギーは保存する。 (2) 点A (あるいは点B)と点Cで 力学的エネルギーは保存する。(3) 点Aと点Dで力学的エネルギーは保存する。 (1) 水平面 ABを重力による位置エネルギーの基準面 とすると,点Aでの力学的エネルギー EA 〔J〕 は Ex=0+0+1×98×(0.10)2 = 0.49 [J] 点Bでの力学的エネルギーEB 〔J] は Ec=EA(=EB) であるから (2.0×10-2) x 9.8 × H = 0.49 H 0.49 (2.0×10-2) x 9.8 = 2.5〔m〕 (3) 点 A'での力学的エネルギーE^' 〔J〕] は 0+1/x 答 2.5m Ex' = 0 +0+ -x98xx2 EB =1/2x - × (2.0×10-2) x V2 + 0 + 0 = = 1.0 × 10-2 × V2 [J] である。 ( EA ) = イ(EB )より 点Dでの力学的エネルギー En 〔J] は En = 0 + (2.0×10 -2) x 9.8 × 10 + 0 である。ウ( 0.49 V= 0.49 = 1.0 × 10-2 × V2 1.0×10-2 7.0 [m/s] (2)点Cでの力学的エネルギー Ec 〔J] は Ec = 0 + (2.0×10-2) x 9.8×H [J] +0 答 7.0m/s ) -x98xx = (2.0×10 -2) x 9.8 × 10 x 2 = 4.0×10-2 x=0.20〔m〕 )より 答 0.20m

解決済み 回答数: 1
物理 高校生

なぜ右向きを正に運動方程式を立てるのかがわかりません 左に動くのになぜ左向きが正ではないのでしょうか?

(1) 図1のように質量の無視できるばねを鉛直につり下げる. 鉛直下向きを正としてy軸をと りばねが自然長であるときのばねの先端を原点とする. 大きさの無視できる質量mの物 体をばねの先端にとりつけると、位置y=I1-a で物体に働く重力とばねの復元方がつ り合い,物体は静止した.ただし,ばね定数を重力加速度の大きさを9とする。物体を下 方に引いて静かに手を離すと, 物体はy軸方向に y を中心とする単振動をはじめた.物体の 座標をy, 加速度をαy とすると, 運動方程式は I1-b と書ける. (2)次に図2のように、摩擦のある水平面上でばね定数kのばねの一端を固定し、他端に質量 mの物体をとりつける.物体の運動方向にx軸をとり ばねが自然長であるときの物体の位 置を原点Oにとる. 物体と水平面との間の静止摩擦係数!!.動摩擦係数は定数とする. こ こでは、物体の速さが0となるときは、物体に働く摩擦力として、最大で静止摩擦係数を用い た摩擦力が働くものとする. 位置x (0) まで物体を引いて静かに手を放すと, 物体はxがあ る値d以下のときには動かず,dより大きいときには滑り出した. dは I 2 と表される. 物体を位置xo(>d)まで引いて, 時刻 t = 0に静かに手を放すと物体は動き出し,位置 (0)ではじめて速さが0となった. この間の物体の運動方程式は、 物体の座標をx, 加速 度をα とすると. I3-a と書ける.この方程式を(1)の場合と比較すると, この運動は, I3-b を中心とする単振動である. x1 は x を用いて14-a と表される.x で物 体が静止し続けるためのxの最大値 Xは 14-b である. xc= 以下では,x > Xとする. 物体はx から再び動き出し, x2 ( d) で再び速さが0となっ また、この間の物体の運動方程式は I5-a と書け, x2 は x を用いて I5-b と表され る.その後,物体は再度 x2 から動き出したが, x(<0) で速さが0となり再び動き出すこと はなかった. 力学的エネルギーの変化が動摩擦力の行った仕事に等しいことを利用すると,x3 に達するまでに物体が運動した全行程の長さは, x0 と x3 を用いて 16-a と表すことがで きる。 物体の位置と時刻との関係をグラフで表すと図3の 16-b のようになる.

解決済み 回答数: 1