学年

教科

質問の種類

物理 高校生

(4)のマーカーの部分が分かりません💦 糸がたるまない=遠心力が重力と張力の合力以上になる という考え方は間違っているのでしょうか??

図(a)に示すように、天井に取付たれた支点 0及び支点 0′から,質量mのおもりが軽い糸 5 で吊り下げられ, 床から高さ の位置Aで静 止している。 2本の糸のなす 角∠OAO'は90°である。 支点0とおもりを結 糸の長さは3ヶであり, 床から2つの支点まで の高さは4rである。 糸の質量, 伸び, 空気抵 抗は無視できるものとし, おもりは1つの鉛直 面内で運動するものとする。 支点の直下で床 から2mの高さの点Pには太さを無視できるくぎ が鉛直面に垂直に固定されている。 重力加速度 の大きさをgとする。 (1) 糸OAに生じている張力の大きさを求めよ。 (2) おもりの最下点Bを通過するときの速さ を求めよ。 (3) おもりの最下点Bを通過した後、「点Pを支点 として運動する。 通過直前の糸の張力の大 きさを T1, 通過直後の糸の張力の大きさ T2 を T2 とする。 その両者の比 の値を求 めよ。 おもりを糸O'Aから静かに切り離したところ, 図 1 (b)に示すようにおもりは点Oを支 点とする運動を始めた。 再び, おもりを位置Aに戻し, 初速度を与え たところ, おもりは図1(c)に示すように, 糸がたるまずに点P点の真上の点C (OC=CP =r) に到達した。 到達すると同時におもりを 糸から切り離したところ, おもりは床に落下し た。 ただし、初速度はおもりの描く軌跡に対して 接線方向に与えるものとする。 m (4) 糸がたるまずにおもりが点Cを通過するた めに必要な初速度の大きさの最小値v を 求めよ。 m 3r 図1(a) m D 3. 図1 (b) 3r KL 図1 (c) PB ----- B ぎK-2 O (5) 位置Aでおもりに 【問1】 (4)で求めたv を初速度の大きさとして与えた場合の点Cか ら落下地点D点までの水平距離Lを, m, g,の中から必要なものを用いて表わ せ。

回答募集中 回答数: 0
物理 高校生

この問題の(き、く)の部分の解決で、何故x軸方向にE/Bで移動する観測者と分かるのですか? どなたか教えて頂けると助かります

VI. 次の文を読み、下記の設問1・2に答えよ。 解答は解答用紙の所定欄にしるせ 14 2022 年度 物理 電場や磁場の影響を受け, y 図1のように,y 軸方向正の向きに強さE の一様な電場がかかっているとする。 電気量 g (g > 0)の荷電粒子が時刻t = 0 に原点 0 から初速度 0(0) で運動を開始した。 時刻でのこの粒子の位置は (x,y)=(あ, である。 である。 ・図2のように、xy平面に垂直に、紙面の裏から表に向かって, 磁束密度B の一様な 場がかかっているとする。 質量 m, 電気量 g (g > 0) の荷電粒子が時刻 t = 0 に隠さ 0から初速度v = (u,0)(v>0) で運動を開始した。 この粒子が運動開始後に 初に y 軸を通過するときの時刻はt= E V y 平面上を運動する荷電粒子を考える。 0 STUSKO 図3のように, y 軸方向正の向きに強さE の一様な電場と, xy平面に垂直に紙面の から表に向かって、 磁束密度B の一様な磁場の両方がかかっているとする。 質量m, t 気量g(g> 0)の荷電粒子が時刻t = 0 に原点Oから初速度 (0,0)で運動 開始した。この粒子の x 軸方向,y 軸方向の速度をそれぞれ ux, vy, 加速度をそれぞ = Q1 Q とすると,運動方程式は 図1 X (x,y)=(0, B [O うで,そのときの座標は え) V い y 図2 B 立教大 0 図3 とな で運 で道 道を Vo 1. 2.

回答募集中 回答数: 0
物理 高校生

問9で、sinθ=√3/4なのは何故ですか?

例題 2 屈折波の波面 図のように,平面波が境界面に達した。 屈折 波の波面を作図せよ。 ただし, 媒質 I に対す る媒質ⅡIの屈折率を2 とする。 2 (+式 (9)) から, 01=n12=2 V₂² V₁ T 境界面 -= 1212 V₁ 指針 屈折の法則 -=n1z(p.152・式(9))から, 媒質ⅡIにおける波の速さが,媒質 V2 Iにおける速さの何倍になるかを求める。 ホイヘンスの原理にもとづいて素元波を描 き, 屈折波の波面を作図する。 解 媒質 I, I における波の速さをそれぞれ v1, v2 とすると, ma 逆の屈折る V₁ V2 V2 であり、媒質 Ⅱ における波の速さは, 媒質 Ⅰ における速さの1/12/2になる。図のように,B2 からAB におろした垂線とA,B との交点 B2C の素元波 (半 をCとして, B, から半径 円) を描く。 このとき, B2 からこの素元波に 2 引いた接線が, B2 を通る屈折波の波面となる。他の波面は,入射波の波面と境界面の『 交点から,この接線に平行な線を引くことで求められる。 B1 B2C 2 B2 入射波 の波面 媒質 Ⅰ A2 媒質 ⅡI] 屈折波 の波面 入射波 の波面 媒質 Ⅰ 媒質 Ⅱ 問9 類題例題2で,入射波の波面と境界面のなす角を60° とする。このときの屈折角 を0として,sin0 の値を求めよ。答えは分数のままでよく, ルートをつけたままでよい。 8 平面波 障害物に を送ると, にまわりこ 回折は, 部分にも すき間 (a))。 した る (図 波長よ の

回答募集中 回答数: 0
物理 高校生

⑶についてです。黒く書いたように6m延長させるのはなぜ間違ってるのですか?なぜ上下逆転するのですか?

170 W章 波動 基本例題44 横波の伝わり方 図は,x軸上に張られたひもの1点Oがy[m〕 単振動を始めて, 0.40s 後の波形である。 0.20 (1) 振幅, 波長, 振動数, 波の速さはそれ ぞれいくらか。 (2) 図の0,a,b,cの媒質の速度の向 きはどちらか。 速さが0の場合は 「速さ」と答えよ。 両 (3) 図の時刻から. 0.20s後の波形を図中に示せ。 指針 (1) 周期は、波が1波長の距離を 進む時間から 0.40s である。 振幅, 波長をグラ フから読み取り, 振動数, 波の速さを求める。 6 (2) 横波では, 媒質の振動方向は波の進む向き に垂直であり、媒質はy方向に振動している。 (3) 波は1周期の間に1波長の距離を進む。 解説 (1) グラフから読み取る。 振幅 : A = 0.20m, 波長 : 入=4.0m 振動数, 波の速さは, 振動数:= 1/72= 波の速さ : v=fd = 2.5×4.0=10m/s (2) aとcは振動の端なので速さが0である。 Oとbの向きは,微小時間後の波形を描いて調 べる。 0: 上,b:下,aとc: 速さ 0 ST 1 0.40 =2.5 Hz I 08.0 0 JA 20 -0.20 a y[m〕↑ 0.20 0 y[m] 0.20 C HA wazlo -0.20 基本問題 334, 335,336 Say 6 7 FAX 3 微小時間後 I 52 8 HOTO 4 5 6 7 8 x[m] 133-0.20 a (3) 周期が 0.40sなので, 0.20s 間で波は図の状 R 態から半波長分を進む。 x (m) I に ** XX I I 6 7 8 x〔m〕 0 [Point 媒質の速度の向きを調べるには, 微 小時間後の波形を描くとよい。 SHU

回答募集中 回答数: 0
物理 高校生

(1)の問題 運動エネルギーの変化と仕事の関係の式 v∧2-v0∧2=2axを使っていますけど この場合距離xの部分には5.0mと行って帰ってくる分も追加しなくて良いのですか? 行って帰ってくる間に速度のベクトルが逆向きになって 運動エネルギーも変わっていると思うのです

発展例題2 等加速度直線運動 斜面上の点Oから, 初速度 6.0m/sでボールを斜面に沿 って上向きに投げた。 ボールは点Pまで上昇したのち,下 降し始めて, 点0 から 5.0m はなれた点Qを速さ 4.0m/s で斜面下向きに通過し、点Oにもどった。 この間, ボール は等加速度直線運動をしたとして, 斜面上向きを正とする。 (1) ボールの加速度を求めよ。 (2) ボールを投げてから, 点Pに達するのは何s後か。また, OP間の距離は何mか。 (3) ボールの速度と投げてからの時間との関係を表すv-tグラフを描け。 (4) ボールを投げてから, 点Qを速さ 4.0m/sで斜面下向きに通過するのは何s後か。 また, ボールはその間に何m移動したか。 指針 時間t が与えられていないので v²-vo2=2ax を用いて加速度を求める。 また, 最 高点Pにおける速度は0となる。 v-tグラフを 描くには、速度と時間との関係を式で表す。 解説 (1) 点0, Qにおける速度, OQ 間 の変位の値をv²-v2=2ax に代入する。 (−4.0)²-6.02= 2xα×5.0 a=-2.0m/s2 (2) 点Pでは速度が0になるので, v=v+at か ら, 0=6.0-2.0×t t=3.0s 3.0s後 S OP 間の距離は,x=vot+ at から, +/12/4から、 x = 6.0×3.0+ 1/23 x(-2.0)×3.02=9.0m (3) 投げてからt [s]後の速度v[m/s] は, v=v₁+athb, v = 6.0-2.0t v-tグラフは, 図のようになる。 v (m/s) 6.0 0 -4.0 -6.0 1 5.0m 発展問題 23, 24,25 (4) v=votat から, 16.0m/s OP間の距離 P PQ間の距離 4 25 6 t〔s〕 -4.0 =6.0+ (-2.0) xt 6.0×3.0 (5.0 -3.0)×4.0 + 2 2 5.0s 後 t=5.0s ボールの移動距離は, v-tグラフから, OP 間 の距離とPQ間の距離を足して求められ、 =13.0m Q Point ■Point v-tグラフで, t軸よりも下の部 分の面積は、負の向きに進んだ距離を表す。

未解決 回答数: 1
物理 高校生

画像の問題の回答教えていただきたいです😿

題 1 次の文章を読み に適する数式を入れ, [ に適する語句または文章を入れよ。 ほぼ50年前に, 人工衛星の打ち上げに初めて成 功して以来, 人類は月面着陸さらに火星探査に成 功するまでに至ったが, 300年も前にニュートンは すでに人工衛星の可能性を予言していた。 ニュートンが予言したような地球のまわりを まわる人工衛星について考えてみよう。 ただし、地球を半径R,質量Mの一様な球と みなし, 地球と人工衛星以外の天体の影響, 地球の自転と公転および大気の影響は無視 する。 地表での重力加速度の大きさg は, M, R と万有引力定数Gを用いて,g=ア と表される。 いま, 地表から打ち上げられた質量 mo の物体が, 半径 α, 速さの円運動をする 人工衛星になった。 この衛星にはたらく円運動の加速度は万有引力によって生じるの で,その関係式はイと表される。 これより速さはv=ウ となり,この円運動 の周期T は, G, M, a によって,T=エと表される。円軌道を描く人工衛星のカ 学的エネルギーは、(イ) を用いて G, M, mo, a によって,オと表される。 ただ し,万有引力が0になる無限遠点を位置エネルギーの基準点にとる。 円軌道上の点Aで,衛星中の質量m' の部分が,衛星の進む方向と逆向きに相対速 度V(Vは正) で衛星から瞬間的に分離された。 分離直後, 衛星の残りの部分は質量が m=mom'となり, 速さがv からに増加し, 図のように地球の中心を焦点とす るだ円軌道を描くようになった。 質量m'の部分の速さはva-Vとなる。 ただし,分 離直前の衛星の速度の向きを正とする。分離前後で運動量が保存されるとして, その保 存則は,mo, m', m, Vo, va, V を用いてカで表される。 B UB VA -b A 地球の中心よりだ円軌道の近地点Aまでの距離はαである。 遠地点Bまでの距離を b とする。惑星の運動に関するキ]の第2法則を人工衛星に適用すると, 地球の中 心と衛星とを結ぶ線分(動径) が,単位時間当たりに描く面積は一定である。 近地点Aで の面積速度は 12/24v』であるから,遠地点 B での速度vgは,a,b, vaを用いて, - UB=ク と表される。 だ円軌道上では、力学的エネルギーは運動エネルギーと万有 引力による位置エネルギーの和であり保存されるから, 点A と点 B での力学的エネル ギーが等しいことは, G, M, m, va, UB, a, b を用いて,ケで表される。 (ウ), (ク),(ケ)より, a, b を用いて, "=| | XVO, UB=サ となる。 人工衛星が図のようなだ円軌道を描くためには,点Aでの力学的エネルギーが負で あればよいので, v = (ウ) を考慮すれば, "A<シ xv となる。これと (カ) より, Vの上限は, mo, m' を用いて, ス となる。 (コ)×vo の式を変形して, 6 (人工衛星の到達距離) を vo, va, a を用いて表す。 この式を用いて,vAが(シ)×vに限りなく近づくと,人工衛星の最大到達距離はどう なるかを述べよ。〔セ]

未解決 回答数: 0