学年

教科

質問の種類

物理 高校生

わからないので教えていただけると幸いです🙇‍♀️

2. 以下の文中の( )に最も適する式・数値を答えよ。 右上の図のように、 速さぃ、半径r で等速円運動する物体の速度ベク トルの向きは時間とともに常に変化するので、 等速円運動する物体は加 速度を持っている。 下図は、上図で物体が基準線から角0だけ回転した 位置にある点Aから点Bに角 40だけ移動したときの、それぞれの速 度ベクトルを拡大して書き出したものであり、その速度変化は下図の4 vとなる。この間の移動時間を4t とすると、このときの平均の加速度 の大きさは(1) である。また、二つの速度ベクトルの間の角は上図における角 (2) に等し い。 その後、時間がたつにつれて速度ベクトルは半径の円を描くように 動いていくので、 速度変化 4vは速度ベクトルが描く円の弦になってい ることがわかる。 時間 4t が十分小さいときには角 (2) も十分小さい。し たがって、このとき弦の長さは円弧の長さに等しいとみなすことができ るので、Av とぃおよび (2) の関係は角度の単位 [rad] の定義より、Av ≒(3)と近似できる。 これを(1) に代入して⊿v を消去すると物体の瞬 間的な加速度の大きさが得られ、 α= (4) である。ここで、 角速度 ① の定義より、 At で表すとω = (5) であるから、加速度 αはひおよびを用いて α = (6) と書ける。 また、 ひとの関係は v = (7) だから、これを用いてαを半径r および角速度 の だけで表すと、α= (8)となる。また、 逆に v = (7) より α = (6) の を消去して、 α を半径rおよび速さvだけで表 すと、α= (9) となる。 加速度の向きは半径方向中心向きなので、このαを特に向心加速度と呼 を (2) と Toda Av 1 V ABA 0 2

回答募集中 回答数: 0
物理 高校生

円運動の基礎的な問題です💦 答えだけで大丈夫なので教えてほしいです💦

2. 以下の文中の( )に最も適する式・数値を答えよ。 右上の図のように、 速さぃ、半径r で等速円運動する物体の速度ベク トルの向きは時間とともに常に変化するので、 等速円運動する物体は加 速度を持っている。 下図は、上図で物体が基準線から角0だけ回転した 位置にある点Aから点Bに角 40だけ移動したときの、それぞれの速 度ベクトルを拡大して書き出したものであり、その速度変化は下図の4 vとなる。この間の移動時間を4t とすると、このときの平均の加速度 の大きさは(1) である。また、二つの速度ベクトルの間の角は上図における角 (2) に等し い。 その後、時間がたつにつれて速度ベクトルは半径の円を描くように 動いていくので、 速度変化 4vは速度ベクトルが描く円の弦になってい ることがわかる。 時間 4t が十分小さいときには角 (2) も十分小さい。し たがって、このとき弦の長さは円弧の長さに等しいとみなすことができ るので、Av とぃおよび (2) の関係は角度の単位 [rad] の定義より、Av ≒(3)と近似できる。 これを(1) に代入して⊿v を消去すると物体の瞬 間的な加速度の大きさが得られ、 α= (4) である。ここで、 角速度 ① の定義より、 At で表すとω = (5) であるから、加速度 αはひおよびを用いて α = (6) と書ける。 また、 ひとの関係は v = (7) だから、これを用いてαを半径r および角速度 の だけで表すと、α= (8)となる。また、 逆に v = (7) より α = (6) の を消去して、 α を半径rおよび速さvだけで表 すと、α= (9) となる。 加速度の向きは半径方向中心向きなので、このαを特に向心加速度と呼 を (2) と Toda Av 1 V ABA 0 a

回答募集中 回答数: 0
物理 高校生

写真の問題をお願いします💦 答えだけで大丈夫です!!

2. 以下の文中の( )に最も適する式・数値を答えよ。 右上の図のように、 速さぃ、半径r で等速円運動する物体の速度ベク トルの向きは時間とともに常に変化するので、 等速円運動する物体は加 速度を持っている。 下図は、上図で物体が基準線から角0だけ回転した 位置にある点Aから点Bに角 40だけ移動したときの、それぞれの速 度ベクトルを拡大して書き出したものであり、その速度変化は下図の4 vとなる。この間の移動時間を4t とすると、このときの平均の加速度 の大きさは(1) である。また、二つの速度ベクトルの間の角は上図における角 (2) に等し い。 その後、時間がたつにつれて速度ベクトルは半径の円を描くように 動いていくので、 速度変化 4vは速度ベクトルが描く円の弦になってい ることがわかる。 時間 4t が十分小さいときには角 (2) も十分小さい。し たがって、このとき弦の長さは円弧の長さに等しいとみなすことができ るので、Av とぃおよび (2) の関係は角度の単位 [rad] の定義より、Av ≒(3)と近似できる。 これを(1) に代入して⊿v を消去すると物体の瞬 間的な加速度の大きさが得られ、 α= (4) である。ここで、 角速度 ① の定義より、 At で表すとω = (5) であるから、加速度 αはひおよびを用いて α = (6) と書ける。 また、 ひとの関係は v = (7) だから、これを用いてαを半径r および角速度 の だけで表すと、α= (8)となる。また、 逆に v = (7) より α = (6) の を消去して、 α を半径rおよび速さvだけで表 すと、α= (9) となる。 加速度の向きは半径方向中心向きなので、このαを特に向心加速度と呼 を (2) と Toda Av 1 V ABA 0 2

回答募集中 回答数: 0
物理 高校生

答え合わせがしたいので ()の中の答えを教えてください!

2. 以下の文中の( )に最も適する式・数値を答えよ。 右上の図のように、 速さぃ、半径r で等速円運動する物体の速度ベク トルの向きは時間とともに常に変化するので、 等速円運動する物体は加 速度を持っている。 下図は、上図で物体が基準線から角0だけ回転した 位置にある点Aから点Bに角 40だけ移動したときの、それぞれの速 度ベクトルを拡大して書き出したものであり、その速度変化は下図の4 vとなる。この間の移動時間を4t とすると、このときの平均の加速度 の大きさは(1) である。また、二つの速度ベクトルの間の角は上図における角 (2) に等し い。 その後、時間がたつにつれて速度ベクトルは半径の円を描くように 動いていくので、 速度変化 4vは速度ベクトルが描く円の弦になってい ることがわかる。 時間 4t が十分小さいときには角 (2) も十分小さい。し たがって、このとき弦の長さは円弧の長さに等しいとみなすことができ るので、Av とぃおよび (2) の関係は角度の単位 [rad] の定義より、Av ≒(3)と近似できる。 これを(1) に代入して⊿v を消去すると物体の瞬 間的な加速度の大きさが得られ、 α= (4) である。ここで、 角速度 ① の定義より、 At で表すとω = (5) であるから、加速度 αはひおよびを用いて α = (6) と書ける。 また、 ひとの関係は v = (7) だから、これを用いてαを半径r および角速度 の だけで表すと、α= (8)となる。また、 逆に v = (7) より α = (6) の を消去して、 α を半径rおよび速さvだけで表 すと、α= (9) となる。 加速度の向きは半径方向中心向きなので、このαを特に向心加速度と呼 を (2) と Toda Av 1 V ABA 0 2

回答募集中 回答数: 0
物理 高校生

答え合わせがしたいので 穴埋めしてくださると助かります!

2. 以下の文中の( )に最も適する式・数値を答えよ。 右上の図のように、 速さぃ、半径r で等速円運動する物体の速度ベク トルの向きは時間とともに常に変化するので、 等速円運動する物体は加 速度を持っている。 下図は、上図で物体が基準線から角0だけ回転した 位置にある点Aから点Bに角 40だけ移動したときの、それぞれの速 度ベクトルを拡大して書き出したものであり、その速度変化は下図の4 vとなる。この間の移動時間を4t とすると、このときの平均の加速度 の大きさは(1) である。また、二つの速度ベクトルの間の角は上図における角 (2) に等し い。 その後、時間がたつにつれて速度ベクトルは半径の円を描くように 動いていくので、 速度変化 4vは速度ベクトルが描く円の弦になってい ることがわかる。 時間 4t が十分小さいときには角 (2) も十分小さい。し たがって、このとき弦の長さは円弧の長さに等しいとみなすことができ るので、Av とぃおよび (2) の関係は角度の単位 [rad] の定義より、Av ≒(3)と近似できる。 これを(1) に代入して⊿v を消去すると物体の瞬 間的な加速度の大きさが得られ、 α= (4) である。ここで、 角速度 ① の定義より、 At で表すとω = (5) であるから、加速度 αはひおよびを用いて α = (6) と書ける。 また、 ひとの関係は v = (7) だから、これを用いてαを半径r および角速度 の だけで表すと、α= (8)となる。また、 逆に v = (7) より α = (6) の を消去して、 α を半径rおよび速さvだけで表 すと、α= (9) となる。 加速度の向きは半径方向中心向きなので、このαを特に向心加速度と呼 を (2) と TOE D Av 1 V ABA 0 a

回答募集中 回答数: 0
物理 高校生

全然解けません!教えてください。

308弦の振動とうなり [2008 名城大] 図1のように、線密度が一様な弦の一端に振動数 のおんさをつなぎ, 滑車を通じて他端におもりを付けた 装置 A がある。 おんさを振動させながら, おんさと滑車 の間の弦の長さを調整したところ, 長さがLのところで、 弦に腹の数が4つの定常波が生じた。 次の問いに答えよ。 (1) 弦を伝わる波の速さを求めよ。 (2) 弦を伝わる波の速さは、糸の張力Sと弦の線密度p を用いて, ニ れる。 装置Aにおいて, おもりを質量が4倍のものに取りかえたとき,定常波の腹の数は いくつになるか。 (3) 次に,質量が最初のおもりの5倍のものに取りかえた。 このとき, 弦に生じる波は 前間 (2) と比べてどうなるか。 次の選択肢から正しいものを選べ ①腹の数が等しい定常波が生じる。 ② 腹の数が1つ多い定常波が生じる。 AAA B ⑧腹の数が1つ少ない定常波が生じる。 ④ 定常波は生じない。 おもりを最初のものにもどし, おんさを取 り外して、 弦を壁に固定して装置Bを作った。 そのとき, 壁と滑車の間の弦の長さは変えず に, Lに保った。 その隣に、 弦の長さを変え ることができるが,他はBと同様の装置Cを 設置した(図2)。 弦から発生する音は、 すべて 基本振動の音であるものとする。 (4) 装置 B の弦をはじくと, 振動数の音が 生じた。 は, 装置 A のおんさの振動数 f の何倍か。 図2 図Ⅰ P と表さ (5) 装置Cの弦の長さがLc(Lc>L)のとき, 2つの装置 B, Cの弦を同時にはじいたと ころ、1秒間に回のうなりが生じた。 装置Cの弦をはじいたときに発生する音の振 動数fc をfとを用いて表せ。 (6) 次に、装置Cの弦の長さをαだけ短くして、 2つの装置の弦を同時にはじくと、や はり1秒間に回のうなりが生じた。 α をLとLc を用いて表せ。

回答募集中 回答数: 0