学年

教科

質問の種類

物理 高校生

物理の課題です(><) 1番だけでもすごく助かります! 特にこの単元は電流で苦手なところなので、時間のある方、教えていただけると嬉しいです。

以下の各問に答えなさい。 途中経過が略されている場合、 単位の取扱が不適切な場合には減点する。 2023.4.20/21 第1回レポート 1. 右図の様な断面積Sの導線の軸方向に電場を与え たとする。このとき、電荷e (e>0) の電子が、軸 負方向に一定の速さで運動したとする。 導線の伝 導電子密度をn とするとき、以下の問に答えなさい。 I (1) 時間間隔 t の間に導線の断面 A を通じて運ばれる電荷の大きさ AQ を、 S, n, e, v, At 等を用い て表しなさい。 2. 等しい抵抗をもつ12本の抵抗を、 右図のように接続した。 (1) D, F 間の合成抵抗を求めなさい。 (2) A, Ⅰ間の合成抵抗を求めなさい。 S (2) 導線を流れる電流の大きさを、 S, n, e, v, At 等を用いて表しなさい。 次に、 上の導線が断面積 S = 1.0mm²の銅製の導線であり、 流れた電流が I = 1.0A であったと する。このとき以下の各問に有効数字2桁で答えなさい。 ただし、 銅の原子量は64 ( すなわち、 銅 1mol あたり64g)、密度はp=8.9x103kg/m3である。 (3) 銅原子1個の質量を求めなさい。 ただし、 アボガドロ数は NA=6.0×1023 である。 (4) 銅 1.0m² の質量 m を求めなさい。 (5) 銅 1.0m² に含まれる銅原子の数を求めなさい。 (6) 銅原子1個が自由電子1個を放出すると仮定して、 銅の伝導電子密度を求めなさい。 (7) v を求めなさい。 ただし、 e = 1.6 x 10-19C である。 図1 P A D 図2 B ヒント: 下図のように起電力 Vの電源を接続したとき、 電流Iが流れたとする。 (1) 回路の対称性から、 例えば、図1のように、 電流 ~ Is と推定することができる。 対称性から、B点、 E点 H点の電位は? すると、 Is が求まり、 I が I を用いて、 また、 Is が I4 を用いて表される。 D点にキ ルヒホッフの第1法則を、 閉回路 DABCFED にキルヒホッフの第2法則を用いると、L1, I4 を I で表す事 ができる。 閉回路 PQDEFP にキルヒホッフの第2法則を適用することで、 R = V/I が求められる。 (2) 回路の対称性から、 例えば、図2のように、 電流 I1, I2, Is と推定することができる。 このとき、 A点 B点でキルヒホッフの第1法則、 閉回路 BCFE でキルヒホッフの第2法則を用い、 電流 I, I2, Is を I を用 いて表す。 閉回路 PQADGHIP にキルヒホッフの第2法則を適用することで、 R=V/Iが求められる。 V 1 F ▬

回答募集中 回答数: 0
物理 高校生

問2が解説を読んでもわからないので教えて欲しいです。

気柱の共鳴と音の速さについて考える。 88. 気柱の共鳴 05分) 問1 次の文章中の空欄アに入れる式として正しいものを, 下の①~ ⑥ のうちから1つ選べ。 実験室内に,図のような一端がピストンで閉じられ、気柱の長 さが自由に変えられる管がある。 管の開口部でスピーカーから振 動数fの音を出し, ピストンを開口端から徐々に動かして, 最初に共鳴が起こるときの長さを測定す るとLであった。 さらにピストンを動かし,次に共鳴する長さを測定したところL2であった。 これ より音の速さはア L₁ ③f (L2-Li) (22fL₂ ① fL2 問2 次の文章中の空欄イ Cider Chanel TT BRET L1 A ⑥ f (L2-Li) 5 f(L2-L₁) L2 4 2f (L₂-L₁) (2) Ren L2 { }で囲んだ選択肢のうちから1つずつ選べ。 気柱の長さを L に保ったまま, 共鳴が起こらなくなるまで実験室の気温を徐々に下げた。共鳴が 起こらなくなったのは、管内の空気の温度が下がったため、合脈C SHO D.S SHOS 02.00 ① 音の波長が長くなった ② 音の波長が短くなった ③ 音の振動数が大きくなった ④ 音の振動数が小さくなった ⑤ 音が縦波から横波になった このあと, ピストンの位置を左に動かしていったところ, 管の開口端に達するまでに 管内のイ 共鳴はウ ① 1 回 ② 2 ただし, 開口端補正は無視できるものとする。 と求められる。 ③3 回 ④ 0 回 スピーカー 起こった。 気柱の長さ からである。 それぞれの直後の ウに入れる語句として最も適当なものを、 ピストン 3\m.02.00 [2021 追試] 物理基礎の復習 ③ (波) 67

回答募集中 回答数: 0
物理 高校生

問題の問2について質問なのですが、 明線条件、経路差Δ=2(L2-L1)=mλより 2(L2-L1)がλの整数倍になればいいから 2(L2-L1)=2L2-2L1より、L2が1/2倍、すなわちL2=ΔL=(1/2)Nと表せるのは分かるのですが、 なぜ、「(1/2)Nλ」言い... 続きを読む

問1 20 M で反射される光と M2 で反射される光が干渉 して明るくなったり暗くなったりする。 光源から Mまで, およびMから0までについては,2つの 反射光の経路に違いはなく,それぞれの光が MM1 間,MM2 間を往復することによって生じる経路差 によって干渉が生じる。 この経路差を⊿とすると, 初めの状態でL, <L2 であることに注意して 44=2(L₂-L₁) SMT > また、反射の際の位相変化について考えると, M での反射光は, M, M1 での反射の際に、M2 で の反射光は M2, M での反射の際に、ともにそれぞ れ位相がずれるので,これらは相殺されて干渉 条件に変化はない。よって,干渉によって明るくな る条件は,経路差が波長の整数倍であればよいので 04=2(L₂-L₁)=mλ 4080>&: 21 ② 1 問2 一 経路差 4 の式からわかるように MM2 間の距離 L2 が入/2 だけ長くなると、 経路差⊿ が波長だけ 長くなって次に明るくなる。 したがって, N回目 に明るくなるまでに MM2 間の距離が⊿Lだけ長く なったとき PARTITA λ1 4L=N× |= 2 2 問3 20 Nλ

回答募集中 回答数: 0