学年

教科

質問の種類

物理 高校生

この黄色マーカーしたところってなぜこういう変形になりますか?問題の内容一応乗せましたがあまり関係ないと思います🙇‍♂️

物理基礎(生物選)練習問題 7 高さ9.8 [m]の点から, 仰角30° の向きに 19.6[m/s ] の速さで小球 を投げ出した。 重力加速度の大きさを9.8 [m/s'] として, 次の問 いに答えよ。 ただし, 答えにルートがつく場合は √のまま答え ればよい。 (1) 最高点に達するのは, 投げ出してから何[s] 後か。 (2) 地面から最高点までの高さは何 [m]か。 (3) 物体が再び投げ出した位置に戻るのは、 投げ出してから何[s] 後 か。 (4) 地面に達する直前の物体の速さと, その向き (水平面からの角 度) を求めよ。 (1) 0=9.8-9.8t 最高点に達するとき、 ←鉛直方向の速度。 t=1.0 (2) h=9.8×110-1212×9.8×1.0°+9.8 =9.8-4,9+9,8 = 14.7 (3) 0=9.801-1/2×9.862 t² = 2.0 (⑧t=2t=20) 運動の対称性より Ug 9853 ひx 9.853 7 (4) 投げ上げてから最高点までの 高さ + ビルの高さ ☆水平方向 等速度運動 投げ出した位置に戻るとき 変位0 7 鉛直方向→鉛直投げ上げ 2方向に運動を分ける!! 19.6(15) 2by √₂ sep Vox Vox = 19.6cos30° √3 ・19.6×2=9.8.13 Voy = 19.6sin300 =19.6×12=9.8 樹間 Vx=Uoy=9.8/3 2 Vy ₁²- 9.8² = 2 × (-98) ^ (-98) (1) 1,0 [8] 14.7 [m] Ux 2.0[3] 速さ 9,8/6 ひ (4) 角度 45° 2 Vy² = 9.8² × 3 (U₂₂0) Vy = 9.8√3 V = √(9,863) + (9.853) + = 9.856 8 小 (1) 投 (2) 投 (3) 地 の (4) 水 (5) Va 速さなので い

解決済み 回答数: 1
物理 高校生

51(1)のF〜Hの遺伝子型の比が何回試しても出ません。 そこからしたの問題も全部分かりません。 詳しく解説してくれると嬉しいです。答えは F: YY:Yy:yy=1:0:0 G: YY:Yy:yy=1:2:0 H: YY:Yyxyy=0:0:1です (2)の答えはD:①... 続きを読む

生物問題演習 ホモ接合 ヘテロ接合/雑種 51. (一遺伝子雑種) エンドウには子葉の色が黄色の種子と, 緑色の種子がある。い ま、純系の黄色の種子 (A群)と緑色の種子 (B群) をまいて育て,両者を交雑したとこ ろ,すべて黄色 (C群)になった。 翌年C群の中から50粒を選び, まいて育て,自家 受精させたところ,いずれの個体からも黄色(D群)と緑色 (E群)の種子が得られた。 次にD群の種子から50粒を選び, まいて育てた50本を自家受精させたところ, 17本には黄色の種子ばかり (F群) が生じ,残りの33本ではいずれの個体にも黄色 (G群) と緑色 (H群)の種子がまじって生じた。 (1) 子葉の色についての優性の遺伝子をY, 劣性の遺伝子をyとしたとき, A~H の各群の種子の遺伝子型の (YY: Yy:yy) を示せ。 (2) それぞれの個体に約60粒の種子が実ったとして, D〜H群の種子の数はそれぞ れおよそいくつか。 最も近い数字を下から選べ。 なお、同じ数字を何度選んでも よい。 1 250 6 2000 500 (7) 2250 3 750 8 2500 (4) 1000 (9) 3000 1500 [02 北里大〕 重子の形には丸形としわ形があり、丸形の純系(RR) を自家受精して F2 をつくった。 ませ。 個体はF2 全体の何%か。 び しわ形を現す個体と交雑した。 次代が丸形ばか りのとき、選んだ丸形の個体の遺伝子型を示せ。 またこのような交雑を何というか。 (4) F2 を自家受精して F3 を得た。 F3 の表現型とその分離比を示せ。 (5) F%から2個体を選んで交雑すると,次代では丸形:しわ形 = 1:1となった。 交雑 に用いた2個体の遺伝子型を示せ。

回答募集中 回答数: 0
物理 高校生

物理の試験範囲に該当するページを教えてください🙇‍♀️🙇‍♀️

CONTENTS」の学習内容 基・・・ 「物理基礎」の学習内容 序章 物理の基礎練習・・・・・・ 1 物体の運動・ 2 落下運動 特別演習 第Ⅰ章 力学Ⅰ 三角比とベクトル ③3 力のつりあい 4 運動の法則・・ 特別演習 ② 物体が受ける力のみつけ方 ③ 運動方程式の立て方 5 剛体にはたらく力・・・物 ⑥6 力学的エネルギー・・・ 基 総合問題 77 運動量の保存 8⑧ 円運動 19 単振動・・ ⑩0万有引力 総合問題 (7) 基物 基物 ・基 第Ⅱ章 力学ⅡI 総合問題 [物 物 物 第Ⅲ章 熱力学 11 熱とエネルギー・・ 12 気体の法則と分子運動 4 14 26 30 40 48 52 60 68 80 86 96 108.56 118E76 13 気体の内部エネルギーと状態変化 150 第IV章 波動 14 波の性質 15 音波 ⑩6 光波 総合問題 01 & 0 第V章 電気 17 電場と電位・・ 18 コンデンサー 19 電流・ 総合問題 基物 166 基物 物 180 192 000000000 ( 206 物 210 物煙設 222 基物 232 248 SU It 第VI章 磁気 20 電流と磁場・ 物 21 電磁誘導・ 物 22 交流と電磁波・ ・・・・・・・・・ 物 総合問題 第VII章 原子 [物 1268823 電子と光・ 24 原子の構造・ 25 原子核と素粒子・・・・・・・物 問題 1321 論述問題 162 資料・ 略解‥ -mo A. IX IA38-moNI 1409** ***TONIERE 20 252 262 272 282 286 300 306 318 322 ④ 微分・積分と物理 326 331 337

回答募集中 回答数: 0
物理 高校生

この問題の問3の解き方を教えてください!

原子核に関する次の文章を読み、以下の問い (問1~問3) に答えよ。 原子核の中には, 放射線を放出して崩壊する放射性原子核が存在する。 この崩壊現象の中 でも、アをα線として放出する現象をα 崩壊, イ をβ線として放出する現象を β崩壊という。これらの放射性崩壊は,ある一定時間Tごとに原子核の個数が半減する。 というように起きる。つまり、初めに N 個の放射性原子核が存在していると、それから 時間の後に残っている放射性原子核の個数 N(1)は N(1) = N₁ ( 1 ) + となる。このTを半減期とよぶ。 1Cは、T = 5700年の放射性原子核であり、大気中に存在する 'Cに対する 'gCの個数の は、ほぼ一定であることが知られている。 このVCCは,' C といっ YCCの個数 比率 R= 12Cの個数 しょに光合成や食物連鎖を通して生物体内に取りこまれるため, 生物が生きている間は, 体内のRは一定に保たれるが, 生物が死んで活動を停止すると, それ以後の取りこみは 行われず、R は 'CC の崩壊により減少していく。したがって、生物体内での R を測定す ることによって, その生物が活動を停止してからの時間を推定することができる。 これ が1gCによる年代測定の原理である。 'Cは崩壊することにより Nとなる。よって、このCの崩壊現象はウであると わかる。 問1 文章中の空欄 に入れる語句として最も適当なものの組合せを次 の①~ ⑧ のうちから1つ選べ。 イ ウ 陽子 α崩壊 陽子 β崩壊 電子 α 崩壊 電子 β崩壊 ① ② ③ ア H 空空空空 H H H ア He He ⑦ He He ⑤ イ ||陽子 |陽子 電子 電子 ウ α 崩壊 β崩壊 α崩壊 β崩壊 1 問2 Csは T=30.1年の放射性原子核である。 その個数がもとの 1024 倍になるのに 何年必要か。 最も適当な値を、次の①~⑤のうちから1つ選べ。 ① 3.01 ② 30.1 ③ 3.01 x 102 ④ 3.01 x 103 ⑤3.01 x 10* 3 ある遺跡で見つかった木片の R を測定したところ, 新しい木の であった。この 8 木片が活動を停止してから何年経過したか。 最も適当な値を,次の ①~⑤のうちか ら1つ選べ。 ①7×102 6×103 ③1×10^ ④2×10^ $ 5×10

解決済み 回答数: 1