学年

教科

質問の種類

物理 高校生

物理のエッセンスからです。 3枚目の下にある①、②より、Tの式が書かれてますが、この式は①②の式をまとめればこの式になるのでしょうか? そうであるならどういうふうにまとめれば良いか教えて頂きたいです。

量mのPが水 平に円運動をしている。 Pの底からの高さはんである。 面の垂直抗力 N,Pの速さv, 周期Tを求めよ。 93* 滑らかな水平床上を長さの糸に結ばれて角速度 ので円運動する質量mの小球Pがある。糸の端は 高さんの点0に固定されている。糸の張力Sと床 からの垂直抗力 N を求めよ。 ω がある値 ω をこえ るとPは床から離れる。 ω を求めよ。 面から離れる 垂直抗力= 0 ・R→ P 鉛直面内の円運動 糸におもりを付けて鉛直面内で回したり,円筒面を滑り動く小球の運動な どは円運動であっても, 等速ではない (上へ上がるほど位置エネルギーに食 われてスピードが遅くなる)だけに扱いが難しい 鉛直面内の円運動を解く 1 力学的エネルギー保存則 2 遠心力を考えて,半径方向で 糸 T 4 v 解説〕 力のつり合い式をつくる。 Vo +1 mg 遠心力 図1のように長さの糸で結ばれたおもりを最下点から初速v で回す。角日 をなしたときの速さをv, 糸の張力を とすると,より 1212mv=1/2mu2+mgr(1-cos 0) mgr -mgrcoso

解決済み 回答数: 1
物理 高校生

熱力学です STEP3でQinがn(Cv+R)(T2-T1)となってますが、どうやってこれ出してますか??

>>1 圧縮 比例 1 V グラフ ら、熱 出題パターン 38 定モル比熱と定圧モル比熱 「ピストンつきの容器内に, n モルの理想気体が, 体積V1, 温度Tで閉じ こめられている。 大気圧はp, 気体定数は R, 定積モル比熱を Cvとする。 「ピストンを自由に動けるようにして、熱を与えて温度をT2にした。この とき, 内部エネルギーの変化 4U, 気体が外部にした仕事 Wout. 気体に加 えた熱 Qin はいくらか。 また、 以上の結果から,気体の定積モル比熱 Cr と 定圧モル比熱 C, の間にはどのような関係があるか。 解答のポイント! 定圧変化であっても4U = Con⊿T の形となることに注意。 解法 熱力学の解法3ステップで解く。 AJR STEP1 変化の前後でのか,Vn,Tを 図示する。 ここでピストンは自由に動けるので, ピストン内の気体の圧力は大気圧とつりあって いて,いつもpとなる。 このように、大気圧、 重力などの一定の力を受け自由に動けるピスト 前 p V₁ 4 大気圧 nTi ンでは、必ず定圧変化になるのだ。 また、後の圧力 体積を V2 (未知数) とおくと, DV2 n T2 大気 1圧 図 11-4 前 (3 p Nout 前:pV=nRT ... 1 負 後:pV2=nRT ... ② -Wout E縮 STEP2 Vグラフは図11-5のようにな る。 色のついた部分の面積が外へした仕事 Wout V₁ V2 体積V 1). になる。 図 11-5 いる にあ STEP3 熱力学第1法則を表 (表中雪)にまとめると, Qin n(Cy+R) (T2-T, + 4U Wout Cyn (T-T) |p (V2-V)=nR(T2-T) (1②より) また,定圧モル比熱 C, は, 圧力一定で1モルの気体を1K上昇させるのに要する熱 であるので,Qmでn=1 [mol], T2-T=1 [K] としたものに等しく. C=1x (Cy+R)×1=Cv+R この式は理想気体であれば必ず成立するので、この例題とともに覚えておこう。 STAGE 11 気体の熱力学 125

解決済み 回答数: 1
物理 高校生

熱力学です STEP3でQinがn(Cv+R)(T2-T1)となってますが、どうやってこれ出してますか??

出題パターン 38 定積モル比熱と定圧モル比熱 ピストンつきの容器内に、 モルの理想気体が, 体積 V1. 温度Tで閉じ こめられている。 大気圧はp, 気体定数は R, 定積モル比熱をCとする ピストンを自由に動けるようにして、熱を与えて温度を T2 にした。この とき, 内部エネルギーの変化 4U, 気体が外部にした仕事 Wout 気体に加 えた熱 Qin はいくらか。 また、 以上の結果から, 気体の定積モル比熱 Cr と 定圧モル比熱Cの間にはどのような関係があるか。 解答のポイント! 定圧変化であっても 4UCn4T の形となることに注意。 解法 熱力学の解法3ステップで解く。 STEP1 変化の前後でのか,V,n,Tを 図示する。 ここでピストンは自由に動けるので、 ピストン内の気体の圧力は大気圧とつりあって いて、いつもp となる。 このように、大気圧, 重力などの一定の力を受け自由に動けるピスト 前 p V₁ 大気圧 nTi D V2 大気 nT2 図 11-4 ンでは、必ず定圧変化になるのだ。 また後の圧力は最 体積を V2 (未知数) とおくと, 前:pV=RT ... ① 前 圧 Wout 後:pV2=nRT2 ... ② STEP2 Vグラフは図11-5のようにな る。 色のついた部分の面積が外へした仕事 Wout になる。 0 V₁ V2 体積V 図11-5 STEP3 熱力学第1法則を表 (表中) にまとめると, Qin 4U + Wout n(Cy+R) (T2-T) Crn (T2-T)p (V2-V)=nR(T2-T) (1 ②より) また,定圧モル比熱 C, は, 圧力一定で1モルの気体を1K上昇させるのに要する熱 であるので,Qmmでn=1 [mol], T2-T, = 1 [K] としたものに等しく =1x (C+R)×1= [Cy+R この式は理想気体であれば必ず成立するので、 この例題とともに覚えておこう。 STAGE 11 気体の熱力学 125

解決済み 回答数: 1