学年

教科

質問の種類

物理 高校生

問題集17についてです (4)の解答で①を代入してと書いてありますが、①は切断する前の関係なのになんで切断後も使えるんですか?

14 (イ) 糸yの張力はいくらか。 (ウ)Bが板を押している力はいくらか。 16 基 水平な床から 30°傾いた斜面上に 質量mの物体Pがあり, 質量Mの小 物体Qと滑らかな滑車をかいして糸で 結ばれている。 Pと斜面の間の静止摩擦 係数を / 動摩擦係数をとし、重 力加速度をg とする。 2/3 力学 15 (武蔵工大+北海道工大) 0=v+α'tz より 141 17 等速度運動 (等速直線運動) では力のつり合いが成りたつ。 浮力 (1) Aに注目すると T=mg (2) B に注目すると F=Mg+T= (M+m)g ... ① Mg, m P 130° 浮力の公式 F=pVg より V=F_M+m 浮力は周りの流体 の密度で決まる B T pg P (3)Aは初速での投げ上げ運動に入る。 地面の座標は x=-h だから,公式を用いて T A mg (1) PQ が静止しているためのMの範囲をm を用いて表せ。 (2)味からのQの高さをおとしごととして静かに放すと 下がり始めた。Pが滑車に衝突することはないものとする。 (7)Qの加速度の大きさと、Qが床にするときの速さ よ。 か を求め (イ) Q が床に達した後,Pはやがて斜面上で最高点に達して止まった。 Pが動き始めてから止まるまでに移動した距離とかかった時間 を求めよ。 -h=vto+(-9)to gt-2 vto-2h=0 この方法を 3- マスターしたい to >0より to = 1/1 (u+vo+2gh) 9 (4) 糸が切断された後の気球の運動方程式は, 加速度をαとして Ma=F-Mg を代入して a= g えるの 公式③より v₁²-v² = 2 ah .. U₁ = 02+2mgh V M -hmm (富山大 + 横浜国大) 18 (2) 17 質量 M の気球B (内部の気体も含む)が、質量 mの小物体Aを質量の無視できる糸でつるして, 定の速さで上昇している。 重力加速度をg とし 空気の抵抗および物体Aにはたらく浮力は無視でき るものとする。 (1) 右のようになる (Mg, N などの文字は不要)。 N = Mg cos 0 だから 垂直抗力N 空気抵抗力kv B Ma=Mg sin 0-Mg cos 0-kv ...⑰ (3) 等速度運動では力のつり合いが成りたつ。 斜面 方向について Mg sino=μMg cos 0 + kv 動摩擦力 μN A .. v= Mg k (sin0-μ cos0) ... ② 等加速度 重力 3 Mg ではない (1) 糸の張力Tはいくらか。 (2) 気球Bにはたらく浮力Fはいくらか。 また,外部の空気の密度を p とすると,気球の体積Vはいくらか。 物体Aが地面からんの高さになったとき,糸を切断した。 (3) Aが地面に到達するまでに要する時間toはいくらか。 (4) 糸が切断された後, 気球がさらにんだけ上がったときの気球の速 さひはいくらか。 (信州大 ) 別解 等速度では α=0 なので, ①よりを求めてもよい。 (4) t=0では,v=0 なので抵抗力はなく, 加速度を α とすると, ①より Ma = Mg sin 30°μ Mg cos 30° ...3 一方,図2の v-t グラフでは接線の傾きは加速度を表すから ao=3 [m/s] と分かる。 ③より (Mは両辺からカットして) 3= 3-10--10-3 2 2 5√3 15 =2√3 = 0.23 有理化すると 計算しやすい (5)図より終端速度はv=4 [m/s] だから, ② を用いて

回答募集中 回答数: 0
物理 高校生

これの(7)なんですけど!なぜRは一定ってこの文から決めれるんですか?別に送電線を変えればRは変えれることないですか?

136 〈交流の送電〉 交流電圧が送電に広く用いられるのは, 変圧器によって交 ao 鉄心 流電圧を容易に上げ下げできるためである。 ここでは,電力 損失のない理想的な変圧器を考える。 図1のように, 鉄心に 2つのコイル (1次コイルの巻数がn, 2次コイルの巻数が n)を巻く。このとき, 1次コイルと2次コイルの間の相互イ ンダクタンスはMであった。 U1 b 11 112 1次コイル 図 1 2次コイル ⊿の変化するとして、次の設問に答えよ。 なお、設問(1)~(4)は n1, nz, M, ⊿t is ⊿の 時間 4tの間に1次コイルに流れる電流 in が ⊿i だけ変化したとき, 鉄心に生じる磁束が 中から必要な文字を用いて答えよ。 1次コイルに生じる誘導起電力の大きさを求めよ。 (2)2次コイルに生じる誘導起電力をv2とする。このときの比の大きさ n2 を用いて表せ。 〔A〕 V₂ [V] V2 をい V₁ (3) 2次コイルに生じる誘 導起電力 (端子 dを基準 とした端子 cの電位) v2 をMを含む式で表せ。 図 (4) 1次コイルの電流を 図2のように変化させた 2 10 5050 0 1 2 3 4 5 6 -5 t(s) S 10 0 1 2 3 4 5 6 7 t〔s] 図2 -15 図3 ときの時間変化のようすを図3に図示せよ。ただし,電流żの向きは,図1に示した 矢印の向きを正とし, M=5H (ヘンリー) であるとする。 図4のように,発電所 発電所 から送りだされた電圧 V1, 電流 L, 電力Pの交 流は,変圧器Aによって 電圧 V2,電流Izの交流 に変えられ,抵抗Rの送 電線で消費地近くの変圧 交流発電機 変電所 変電所 送電線 12 鉄心 鉄心 消費地 変圧器 A 抵抗 R V2 変圧器 B 抵抗 1次コイル 2次コイル 1次コイル 2次コイル 図 4 器Bに送られる。 送電線の終端の電圧は V3 である。 ただし, 電圧 V1, V2, V3, 電流 I, Iz は実効値である。また,ここで,電力は1周期についての平均の電力であり、1次側,2次 側ともに電圧と電流の実効値の積で表されるとする。 また, 変圧器 A, B はともに電力損失 のない理想的な変圧器である。 (5) 電圧 V3 を P, V2, R を用いて表せ。 (6)発電所から送りだされた電力Pと送電線の終端での電力P' の比,すなわち, e=- 送電効率という。送電効率e を P, Vz, R を用いて表せ。 送電効率を高くするためにはどうすればよいと考えられるか。簡潔に述べよ。 を P [九州工大 改〕

回答募集中 回答数: 0