学年

教科

質問の種類

物理 高校生

なぜFが出てくるのか分かりません。 教えてください🙏🏻

の 基本例題11 接触した2物体の運動 水平でなめらかな机の上に質量がそれぞれ 2.0kg, nois cg 3kg 2kg B 3.0kgの物体A, B を接触させて置く。 A を右向きにA Mat 20N の力で押し続けるとき, 次の各問に答えよ。 大 (1) A. B の加速度の大きさはいくらか。 A,B 太さはい (2) A,Bの間でおよぼしあう力の大きさはいくらか。 指針 2つの物体が接触しながら運動して いるとき, 作用・反作用の法則から、 2つの物体 は、大きさが等しく逆向きの力をおよぼしあって いる。 A, B が受ける力を図示し, それぞれにつ いて運動方程式を立て, 連立させて求める。 解説 (1) AとBがおよぼしあう力の大 きさをF〔N〕 とすると, 各物体が受ける運動方 A F[N] F[N] 20N B [a[m/s2] AM 20N 基本問題 87,96 向の力は、図のようになる。 運動する向きを正 とし,A,Bの加速度をα 〔m/s2] とすると, そ れぞれの運動方程式は, A:2.0×a=20-F ... ① B:3.0×α=F ...2 式 ①,②から、a=4.0m/s2 (2) (1) の結果を式②に代入すると, [M] V3.0×4.0=F F=12N Point A,Bをまとめて1つの物体とみなすと, 運動方程式は, (2.0+3.0)a=20 となり, a が 求められる。 しかし, F を求めるためには、物 体ごとに運動方程式を立てる必要がある。

解決済み 回答数: 1
物理 高校生

円運動、 垂直抗力の正負がほんとに分からないです、この写真のときの、問題でなんで違うんですか。自分で図を書いても意味がわかりません。どなたか図で教えてもらえませんか?

9 3 13 遠心力に関係した身近なも T から見 ang 鉛直面内での円運動 右図のような, 半径r[m]のなめらかな円筒面に向 て質量m[kg]の小物体を大きさ [m/s] の初速 度でなめらかな水平面からすべらせる。 重力加速度の 大きさをg[m/s ] とする。 (1) 鉛直線となす角が0の点(図の点C) を通過すると L A CO 遠心 0 1933 きの小物体と面から受ける垂直抗力の大き AUDIO さを求めよ (2) 小物体が点Bを通過するための の条件を求めよ。 ●センサー 39 円運動では,地上から見て 解くか、物体から見て解く かを決める。 ① 地上から見る場合 遠心力は考えず、力を円の 半径方向と接線方向に分解 し、円運動の半径方向の運 動方程式を立てる。 小井 生ブ か または mr²=F ②物体から見る場合 遠心力を考え、力を円の半 径方向と接線方向に分解し, 5 136 半径方向のつり合いの式を V² m-=F Y HARENTE 立てる。 ※どちらでも解ける。 ●センサー 40 物体が面に接しているとき, 垂直抗力 NO (1) 水平面を重力による位置 エネルギーの基準面とする。 先生にきく 2 mvo ■解答 (1) 点Cでの小物体の速さを [m/s] とすると, 力学的エネルギー 保存の法則より 1 1 = 2 m ゆえに, v=√√√v²-2gr (1+cos) [m/s] F 基準 fr mv²+mg(r+rcose) Vo 3 54 ora ・① 垂直抗力の大きさを/〔N〕 とすると, 地上から見た円運動の運動方程式は, 129 134 138 B A v²-4gr Bmgcose N rcos00 O r [8] mg OmN+mg cos の これにを代入し, 整理すると, 2 mvo N= - mg (2+3 cose) (N) ...... 14 物理 r 別解 小物体から見ると,円の半径方向にはたらく力は、実際丁( にはたらく力のほかに、円の中心から遠ざかる向き start 基準位置 N+mg cose m-0(量的関係は上と同じ) r 9 遠心力がはたらいている。 半径方向の力のつり nof SA 合いより 非等速円運動では,円の接線方向にも加速度があり,物体か ら見た場合,接線方向での力のつり合いを考えるためには、接 線方向にはたらく慣性力を考える必要がある。 (2) (1)より、0 Nはともに減少していく。点Bを通過するためには、点B でぃ > 0 かつ N≧0であればよい。①より①=0を 代 入して、 v= では, 0 が小さくなるにつれて,v, ≦z〔rad] なんで2乗外して?COSO°=1M=

解決済み 回答数: 1
物理 高校生

写真の問題についてですが、図のQ以降は台が水平だから、小物体と台の運動は水平方向だから、水平成分の外力が0なら、運動量保存が成り立ちますが、小物体がQより前にあるとき、 小物体は台の曲面に沿って運動している。つまり運動の成分は水平成分だけではないと思うのですが、なぜ、赤線部... 続きを読む

29 運動量保存の法則 ③ 図のように、質量Mの台が水平な床の上に置かれている。 この台の上面では,摩擦が ない曲面と摩擦がある水平面が点Qでなめらかにつながっている。 台の水平面から高さ にある面上の点Pに質量mの小物体を置き 静かに放す。ただし、空気による抵抗は なく、重力加速度の大きさをgとする。 < 2004年 本試> h P 小物体(質量m) 台 (質量M) 床 R 問3 問2と同様に台が床の上で摩擦なく自由に動く場合, 小物体は, 点Qを通り過ぎ たのち, 点Qからある距離だけ離れた位置で台に対して停止した。 この時点における 台の床に対する運動はどうなるか。 正しいものを、次の①~④のうちから一つ選べ。 ① 小物体が停止しても,台は動くが, その進む方向は点Pの高さんによって決まる。 ② 小物体と台の間の摩擦力により, 小物体が停止しても台は右向きに進む。 ③ 小物体が曲面を下っている間は,台は小物体と反対方向に進むので, 小物体が停 止しても、慣性の法則により台は左向きに進む。 ④ 小物体と台をあわせた全体には水平方向に外力がはたらかないため,運動量保存 の法則により, 小物体が停止すると台も停止する。 X△ 問3台と小物体の系には水平方向に外力がはたらかないから, 運動のすべての局面で 運動量保存の法則が成り立つ。 小物体が台に対して静止し, 小物体と台が一体となっ て運動するときの速度を V' とすると, 運動量保存の法則より、 Palak' su 0=(m+M)V' よって, V'=0 したがって, ④ が正しい。 SHETA LAIT W 31

回答募集中 回答数: 0