学年

教科

質問の種類

物理 高校生

(2) 力学的エネルギーの変化量を考えるとき、動摩擦力による仕事は考えなくていいんですか?

第1章力学 問題 18 仕事と力学的エネルギー ② ばね定数k (N/m) の軽いばねの一端に,質 量m(kg) のおもりAをつけたばね振り子が ある。このばね振り子をあらく水平な床面上 物理基礎 公式 A U = 11/√ kx² 100000000 năm Q 0 -31 P IC 5/ 置き ばねの他端を固定する。 ばねが自然長のときのAの位置を原点と する。 図のように, Aを原点Oから点P(x=5/〔m))まで引っ張って、静か にはなした。Aは左向きに運動し始め、点を通過した。 その後、x=-31 (m) の点Qで静止した。 床面とAとの間の動摩擦係数をμとし、重力加速度 の大きさをg(m/s) とする。 (I)Aが点PからQまで運動する間に、動摩擦力のする仕事 W (N・m) を求 めよ。 Aが点PからQまで運動するときの, Aの力学的エネルギーの変化量 ⊿E (J) を求めよ。 (3) ⊿E = Wが成り立つことを用いて, μを求めよ。 弾性力による位置エネルギー(弾性エネルギー) U (J) (k (N/m): ばね定数 〔m〕: 伸び縮み) (I) おもりAにはたらく動摩擦力の大きさはμmg 〔N〕でPからQまでの移動 距離は8/〔m〕 である。 よって, 求める仕事 W [N·m〕 は, W=-μmg818μmgl (N・m〕 (2) 求めるのは「力学的エネルギーの変化量」なので、 おもりAの運動エネル ギーと位置エネルギーの和の変化量を考える。 Aは水平方向に運動しているので, 高さが変化しておらず重力による位置 エネルギーは考えなくてよい。 また, 点P, 点Qは自然長(原点O)からずれ た位置なので,点P, 点Qにおいて, Aは弾性力による位置エネルギーをもつ。 点P,Qにおける, 弾性力による位置エネルギー Up, UQ[J] は, それぞれ, 〈千葉工業大 〉 Up = =1/21k(50)2-252k2 =/( 9 U₁ = ½k (31)²=kl² 2 (解説) ばねが自然長から伸びたり縮んだりしているとき, ばねの両端 には自然長に戻ろうとする向きに力が生じる。 この力を弾性力 点Pでは 「静かにはなし」 点Qでは 「静止した」 ので, それぞれの点で速 さは0.すなわち, 運動エネルギーKP, Ko〔J〕 も0になる。 よって という。 4E = 0 + 25 0+ -kl² 2 == 8kl² (J] 変化後KQ+ UQ 変化前 K + Up 公式 弾性力の大きさF(N) F=kx (k(N/m〕: ばね定数 〔m〕: 伸び縮み) (3) ⊿E = Wより ※ 弾性力の向きは, 自然長に戻ろうとする向き。 - 8kl² == -8umgl よって, μ = kl mg F ⇒縮みx, 弾性力F,=kx, 弾性エネルギー U22kx2 自然長⇒弾性力0, 弾性エネルギー 0 X1 X2 mmmm 000000 F2 ⇒ 伸びzy→弾性力Fy=kx, 弾性エネルギー U2=1/2k2 自然長 注 ここで, p.39 公式 力学的エネルギーと仕事の関係と p.37 公式 運動エネル ギーと仕事の関係の違いを、しっかりとおさえておこう。 保存力である重力 弾性力について, 位置エネルギーを考えるのが 「力学的エ ネルギーと仕事の関係」 であり, 仕事を考えるのが 「運動エネルギーと仕事の関 「係」である。 1つの式の中で、重力 弾性力の位置エネルギーと仕事を同時に考え こることはない! た, ばねは伸びたり縮んだりしているとき, 弾性エネルギーを蓄えている。 エネルギーは弾性力による位置エネルギーともいう。 kl (1) W = -8μmgl〔N・m〕 (2)4E = - 8kl[J] (3)μ= mg 4. 仕事とエネルギー 41

解決済み 回答数: 1
物理 高校生

物理のエッセンス 力学 74 運動方程式 解答では発射された質量mのガスを正と仮定していますが、私はロケットとは逆方向だと仮定し負にしました。 3枚目が私の考え方なのですが、合っていますでしょうか?

60 力学 以下,滑らかな水平面上での現象とする。 70 2kgの球Pと10kgの球Q が図のように衝突し た。 衝突後のQの速度を求めよ。 71* 静止している質量Mの木片に質量mの弾丸が速 さひで突き刺さった。 木片の速さを求めよ。 ま た、系から失われた力学的エネルギーEを求めよ。 72* 質量Mの粗い板が置かれている。 質量mの物体 が速さで飛んできて, 板上をすべり,やがて板 に対して止まった。 最後の全体の速さ”はいくらか。 運動工か? なんでだ... 73 静止していた物体が,質量mとMの2つに分裂し した。両者の速さの比v/Vと運動エネルギーの比をそ れぞれ, m, M で表せ。 m vo 6m/s 3m/s Po- mvo ■ 運動量保存則はベクトルの関係だから,直線上に限 らず,平面上で起こる衝突・分裂に対しても成り立つ (証 明は前ページちょっと一言と同じ)。 そのような場合には x,y 方向それぞれの成分について式を立てる。ときに は,運動量のベクトル図を描いて考えてもよい。 High 物体系に働く外力の和が0とな Miss 摩擦があると運動量保存則が使えないと思う人が多い。 でも物体と 板の間の摩擦は内力だ。 作用・反作用 3m/s M V A M 0? m トク 静止からの分裂速さは(運動エネルギーも) 質量の逆比 ムズム 74* 速さ Voで進む質量Mのロケットから質量mのガスを後方に噴射したとこ ろ, ロケットから見てガスはuの速さで遠ざかった。噴射後のロケット(質量 M-m) の速さ Vはいくらか。 相対速度の考え方 M V2 V2

解決済み 回答数: 1
物理 高校生

③の問題について、解説の赤線の部分で、pとbを逆にしてはいけないのは何故ですか?

1 次の文章中の空欄①, ②. ④ 〜 ⑨ を数式で,③)を語 句で埋めなさい。 図のように、斜面と水平面と円筒面がなめらかにつな がった経路上での、小球の運動を考える。 斜面上の点A から小球Pを静かに放すと、小球Pは斜面を下ったのち 水平面上の点Bで小球Qに衝突した。 衝突ののち小球Q が運動を開始し, 円筒の内部に導かれて内壁に沿って運 動した。 小球の運動は鉛直面内で起きるものとする。 重 力の作用する方向は鉛直下向きで,重力加速度の大きさをgとする。小球の大きさおよび経路上の摩擦や 空気抵抗は無視できるものとする。 B の比で決まり、 小球 P M m M と表される。 PUA VB A h 0 (iⅰ) はじめに小球Pは斜面上の点Aで静止している。斜面の傾きを0とし、小球Pの質量をMとする。こ のとき斜面から小球Pにはたらく垂直抗力Nは, 0, M, g を用いて N = ( ① ) と表される。 点Aの水 平面からの高さをんとする。 小球Pが斜面を下ったあと, 水平面を移動する速さは, 0, M,g,hの中か ら必要なものを用いて,ぃ= ( ②2 ) と表される。 (i)次に小球Pは,この速さで、点Bに静止している質量mの小球Qに衝突した。 衝突の前後で小球Pと 小球Qの運動エネルギーの和は変化しないとする。 この条件を満たす衝突は ( ③ ) 衝突と呼ばれる。 このとき、衝突の直後に小球Pと小球Qが互いに遠ざかる速さ(相対速度の大きさ)は①と等しい。 衝突 の前後で運動量が保存されることを考慮すると, 衝突後の小球Qの速さ vs は, v, M, m を用いて, UB = ( ④ ) と表される。 この衝突の直後に小球Pが小球Qと同じ方向に運動する条件は, v, M, mか ら必要なものを用いて, M>( 5 ) と表される。 (Ⅲ) 続いて小球Qは、この速さひで,直径んの円筒の内部に進入し、内壁に沿って運動した。 小球Qは経路 の途中で内壁から離れないものとすると、 経路の最高地点Cで速さが最小になる。 点Cでの小球Qの速さ vcは,UB, m,g, hから必要なものを用いて,vc=( ⑥ ) と表される。このとき点Cで小球Qにはたら 遠心力は,vs, m,g,hを用いて, F= ( ⑦ ) と表される。 点Cで小球Q が内壁から離れないため の条件は,F≧mg であるので,これを満たすvBの条件は,mg, hから必要なものを用いて, UB≧( ⑧ ) と表される。 以上の② ④, 8⑧の結果, 小球Q が内壁から離れないための条件は、質量Mと 3-(-3) hiel·lul 小球 Q m h

解決済み 回答数: 1