学年

教科

質問の種類

物理 高校生

青い所で物理では分数はダメなのでしょうか?解説お願いします🙇‍♂️

チェック問題1 等加速度運動の「3点セット」 第5分 次の等加速度運動の 「3点セット」 初期位置 x, 初速度 Vo, 加速度αを表にせよ。 さらに, 時刻 t での速度vと座標を, tを使って表せ。 (1) (2) t=0s 4m/s2 3m/s t=0s 10m/s t=2s 4m/s 軸 軸 x〔m〕 x(m) 2m 0m Step 3 初期位置 Xo 0m 初速度 ひ 10m/s 加速度 α -3m/s2 [公式] より v=10+(-3)t=10-3 t...... 答 [公式]より 2 1 x=0+10t+m×(-3)t2 =10t-1.5t2...... 答 は座標だよ! 移動距離じゃな いからね。 解 説 (1) 《等加速度運動の解法〉 (p.21)で解く。 Step 1 軸はすでに立っている。 (2) Step 2 与えられた図より, 「3点セット」 の表は, 初期位置 Co 2m 初速度 ひ 3m/s 加速度α 4m/s2 Step 3 [公式] (p.17) より, v=3+4t・・・・・・答 [公式] (p.18) より x=2+3t+1/2 x4t2 =2+3t+2t2. 箸 は座標だよ! 移動距離じゃな いからね。 さあ、次の問題で等加速度運動の総まとめをしよう。 Step 1 軸はすでに立っている。 Step2 加速度だけ不明なので, 求める必要がある。 加速度αとは, 1秒あたりの速度の変化なので. (4-10) m/s変化 a= 2秒間で -=-3m/s2 つまり,αは負で減速運動となっている。 以上より, 「3点セット」の表は, いつも座標を意識 している人は物理 が得意になれるよ 22 物理基礎の力学 第2章 等加速度運動 23

解決済み 回答数: 1
物理 高校生

青線の所がよく分からないのですがどなたか解説お願いします🙇‍♂️

チェック問題 1 鉛直投げ上げ運動 3分 右図のように, ボールを真上に初速度 39.2m/sで投げ上げた。 軸 x[m] g=9.8m/s2 重力加速度を9.8m/s2とする。 次の値を 求めよ。 ひ。 =39.2m/s (1) 時刻 t 〔s]での速度v [m/s]と座標 x [m] 0m t=0s (2) 最高点の時刻t]〔s〕 と座標 x] 〔m〕 (3)投げたところに再び戻る時刻 〔S〕 解説 (1)《等加速度運動の解法》 (p.21)で解く。 Step 1 x 軸はすでに与えられている(原点は地面, 上向き正)。 Step 2 初期位置 Xo 0 初速度 39.2 加速度 a -9.8 軸の向きで加速度の符号 が決まるので,はっきり させる必要があるんだ。 軸の正と逆向き Step3 等速度運動の [公式ア (p.17,18) より, 軸x v=39.2+(-9.8)t… ① 谷 最高点で, 谷 v=0 t=t₁ 1 x=0+39.2t+= (-9.8)t... ② 2 xはあくまでも座標だよ! 移動距離じゃないよ。 (2) 最高点とは,上下方向の運動が一瞬止まる点なの で,①の式にv=0, t=hを代入して, 39.2-9.8t=0 したがって, 左=4s.... | また,このときの座標 x=x1 は,②式より, x=39.2×4-4.9×42=78.4m... 答 (3) 戻るとは座標 x=0にくることなので, ②式より, 0=39.2tz-4.9×2=0 は除外 X1 よって, t=8s・・・・・・笞 別解 対称性より,た=2xt=2×4=8s・・・・・簪 0 -t=t₂ 戻るとき, x=0

解決済み 回答数: 1
物理 高校生

答えと解き方を教えてください🙇

STEP 1 公式チェック □U1-1 【等速直線運動】 軸上を一定の速度 [m/s] で動く物体が、 時刻 0s に位置x=2〔m) を通過した。この物体の時刻 [s] での位置ェ 〔m〕は? I= 学習時間 do-vt □U1-2 【等速直線運動のグラフ] r〔m〕 tグラフの傾きは 【 1 】 を表す。 また, b-tグラフで囲まれた面積は 【②】 を表す。 傾きは v[m/s] 面積は Do ① Io =rotot 速度 0 0 t(s) t(s) ② 動 □U1-3 【等加速度直線運動】 時刻 0sに原点Oを初速度vo [m/s] で出発して, 一定の加速度α [m/s] でx軸上を運動する物体がある。 物体の時刻 t [s] での速度 v= x= [m/s] は? 物体の時刻t [s] での位置〔m〕は? これら2式からt を消去した式は? □U1-4 【等加速度直線運動のグラフ】 za's x-tグラフの傾きはその瞬間の 【③】 を表す。 x=vot+ at x [m] b-tグラフの傾きは 【④】 を表 し, v-tグラフで囲まれた面積は 【⑤】 を表す。 v[m/s] v=vo+at 傾きは は 2 v²-vo²= ③ ④ 加速度 分 傾きは Vo O t[s]) t t[s] ⑤ 移動距離 □U1-5 【相対速度】 直線上を速度vAで運動する物体Aと速度UB で運動する物体Bがあ る。 Aから見たBの速度 (相対速度) VAB は? VAB = □U1-6 【自由落下】 初速度0m/sで落下する (自由落下する) 小球がある。重力 O+ 加速度の大きさをg 〔m/s'] とし, はじめの小球の位置を原 49 点として鉛直下向きにy軸をとる。 自由落下を始めてかYO ら時間 t [s] 後の小球の速度v [m/s] と位置y 〔m〕 は? v= ¥0 y= y〔m〕 □U1-7 【鉛直投げ上げ】 小球を鉛直上向きに初速度vo [m/s] で投げ上げた。 重力 加速度の大きさをg 〔m/s'] とし, はじめの小球の位置を 原点として鉛直上向きにy軸をとる。 投げ上げてから 時間 t [s] 後の小球の速度v [m/s] と位置y 〔m〕は? これら2式からtを消去した式は? y〔m〕 yo 0= AVO y= O+ 147

解決済み 回答数: 1
物理 高校生

(2)においてばねの伸びがa-xになるのは何故ですか? a+bだと思ったのですが

出題パターン 鉛直方向への物体の単振動 XA a ばね定数のばねを鉛直に立て、床に固定する。 ば ねの上端に質量の薄い板Bを取りつけ, 板の上 質量の小球A を乗せると、 自然長からだけ縮 んで静止した。 このつりあいの位置を0として、 鉛直上向きに軸をとる。 また、 重力加速度の大きさ をgとする。 (1) ばねの痛み α を求めよ。 次に板B をつりあいの位置から、さらに (0) だけ下げて静かに放すと、 AとBは一体となり単振 動した。 小球Aと板Bの単振動の周期を求めよ。 (3) 位置における, 小球 Aの速さを求めよ。 0 eeeeeee 1-2xy (4) 小球Aが板Bから受ける垂直抗力N の関数として表せ。 代入して などと (5) 小球Aが板Bから離れないもの条件を求めよ。 解答のポイント! A. B間に働く垂直抗力をNとして, A, B それぞれの運動方程式を立て N を求め, AがBから離れる 垂直抗力NO を用いる。 解法 (1)問題文の図で、力のつりあいより (a-x)だけ元に 戻ろする ポイント!! (M+m)g=ka M+mg ... 00 k 今後の式変形に、この人を フル活用することになる。 (2) 単振動の解法3ステップで解く。 X1 必ず向きを Ma +9 れない条件 STEP1 x 軸は与えられている。 STEP2 振動中心は、つりあいの (白)a 位置x=0の点。 折り返し点は速さ0で静かに放し そろえる α ka at Mg x = -b と, 振動中心に対して対 称の位置にあるx=bo X(中)0* mg 図9-8 自然長はx=αの点。 STEP3 9-8 のように、加速度をα. A,B間の垂直抗力をN ると, 図9-8 より A,Bの運動方程式は,

解決済み 回答数: 1
物理 高校生

(2)なぜ、これは強め合いの条件を使うんですか? 優しい方どなたか教えて欲しいです

る。 少の薄 RU 真 どのよ 943 ラス 目の可視 94 光 装置で、光源から波長の光を入射させて実験をし 299 ヤングの実験 右図のようなヤングの実験の 点を原点O, スクリーンと複スリットの距離をL た。 S, S, がら等距離の位置にあるスクリーン上の (1) 屈折率n, 厚さの物質Aをスリット S, の前に置いた。 このとき, 光は物質に対 してほぼ垂直に物質を横切るものとして, 単スリットと複スリットの間で生じる光路 = dはLに比べて十分小さいものとする。 差を求めよ。 (1)で、もともと原点Oにあった縞模様はどちらにいくら移動したか。 (3)物質Aを取り除き,スリット So を図の矢印の向き(下向き)にゆっくりと動かした。 物質を取り除いた後,干渉縞の明暗が初めて反転したときのS,S,-S,S2 はいくらか。 5番目と だけずれ | Step ただし、 94 3 解答編 p.163~166 (1) id, 0, を用いて表せ。 次に、図2のように波長がわずかに異なる。 波長の光を当てると, その1次の回折光を同じ 源 201 300 回折格子 格子定数d の回折格子に,波長入の単色 光を当ててスクリーンに向かわせると,図1のようにスク リーン上で明点が観察された。 図2のように、回折格子に 入射する光の進行方向と回折格子に立てた法線とのなす角 回折光と回折格子に立てた法線のなす角をβとする。 ここでは,α<βの場合を考え, 反射面に入射した光は, 反射面を中心とした素元波を発生させて、 様々な向きに広 がって進んでいくと考えてよいものとする。 (1) 経路 AD, BC をそれぞれ求めよ。 (2) 隣り合う回折光が強め合うときの条件式を書け。 図2 (3) 入射角α = α′で入射し、同じ角度で反射した光 (0次) に対して,最も近い明線の回折光 (1次) がβ=β' を満たすとき,角α'と'の間に成り 立つ式を求めよ。 の方向で観測するためには,回折格子をゆだ け傾ける必要があった。 (2) 経路の差P'A+ AQ' をd, p, 0, を用いて表 せ。 (3) - d, 0, を用いて表せ。 ただし, in cosp=1 と近似せよ。 である。 1 A 入射光 d S 回折格子 6801 回折格子図1は、格子定数dの回折格子に垂直に波長入の光を当て,入射光と の角をなす方向で干渉が起こることを説明した図である。このとき, 1次の回折光は 0 = 0, の方向で干渉を起こした。 PLA A 10 1 図1 図1 スクリーン 回折光 C D B 101 図2 (2) ASP'=, ∠ASQ'=0,-p 基礎 物理 23 その回折と干渉 185

解決済み 回答数: 1