学年

教科

質問の種類

物理 高校生

共テ模試物理 丸が付いていますが、適当に解いたので理解していません。 分からないので教えてください。

問3 図3のように, 単スリットAと複スリットBおよびスクリーンを互いに平行 物理 に置き, 単スリットAの左側に単色光の光源を置いた。 破線は複スリットの垂 直二等分線であり,単スリットとスクリーン上の点を通る。複スリットBの スリット間隔をd, 複スリットBとスクリーンの距離をLとする。この装置を 用いてスクリーン上に生じる干渉縞を観察した。 このとき, 生じる干渉縞につい ての記述として最も適当なものを,後の①~④のうちから一つ選べ。ただし, d はLに比べて十分小さく,またスリットの幅も十分小さいものとする。 4 THESE 光源 ME 単スリットA 複スリットB ↑(ア) d 図 3 スクリーン (イ) ↑ 0 ① 単スリットA (ア)の向きにゆっくりと移動させると,スクリーン上の干渉 縞は (イ)の向きへ移動する。 ② 複スリットBをスクリーン側にゆっくりと移動させると, 点0の明るさは 明暗を繰り返す。 ③ 複スリット B をスクリーン側にゆっくりと移動させても, スクリーン上の 点 0付近の干渉縞の間隔は変化しない。 ④ 単スリットAをスクリーン側にゆっくりと移動させても、スクリーン上の 干渉縞の位置は変化しない。

回答募集中 回答数: 0
物理 高校生

なぜ(2)は、弾性力による位置エネルギー=力学的エネルギーになるんですか?

基本例題19 弾性力による運動 なめらかな水平面ABと曲面 BC が続いてい る。 Aにばね定数 9.8N/m のばねをつけ, その他 端に質量 0.010kgの小球を置き, 0.020m 縮めて はなす。 重力加速度の大きさを 9.8m/s2 とする。 DEFAU (1) 小球は, ばねが自然の長さのときにばねからはなれる。 その後, 小球は, 水平面 AB から何mの高さまで上がるか。 BU (2) 水平面 AB からCまでの高さは0.40m²である。 ばねを 0.10m縮めてはなすと, 小 球はCから飛び出した。 このときの小球の速さはいくらか。 指針 垂直抗力は常に移動の向きと垂直で あり仕事をしない。 小球は弾性力と重力のみから 仕事をされ, その力学的エネルギーは保存される。 (1) では, ばねを縮めたときの点と曲面上の最高点, (2) では, ばねを縮めたときの点と点Cとで,それ ぞれ力学的エネルギー保存の法則の式を立てる。 解説 (1) 重力による位置エネルギーの 高さの基準を水平面AB とすると, ばねを縮め たときの点で、小球の力学的エネルギーは,弾 性力による位置エネルギーのみである。 曲面 BC上の最高点で、速さは0であり、力学的エネ 64 Ta YOWN SECA A 100000円 2 基本問題 138, 146 Jo, yo B v2=1.96=1.42 ルギーは重力による位置エネルギーのみである。 最高点の高さを〔m〕 とすると, ×9.8×0.0202=0.010×9.8×h C ん=2.0×10m (2) 飛び出す速さをv[m/s] とすると,点Cにお いて,小球の力学的エネルギーは,運動エネル ギーと重力による位置エネルギーの和であり, -×9.8×0.10²=1/1×0.010 × z2 20.40m v=1.4m/s +0.010×9.8×0.40

解決済み 回答数: 1
物理 高校生

(オ)の⑦、⑧について質問なのですが、「⑦~⑨より、β>g=10」のところが⑨そのままに見えるのと、(カ)で張力出した時に0じゃないと思うのですが、⑦、⑧は何のために求めたのでしょうか? (出典:難問題の系統とその解き方 服部 嗣雄 著 例題1)

例題1 剛体のつりあい ① 次の文中の □に適する数値(負でない整数)をそれぞれ記入せよ。 図のように、直方体の一様な物体Aが, 水平と45°の傾斜をもつ地盤Bの上に、質 量の無視できるロープCによって取りっ けられた構造物がある。 物体Aと地盤B とは、接触しているだけである。 4m 45° + 2m C 考え方の キホン B 水平面 物体Aの質量:m=1.0×10℃〔kg〕, 重力 加速度の大きさ:g=10[m/s'], 物体Aと地盤Bとの間の静止摩擦係 数および動摩擦係数:J=1/3,√2の値:1.4とし,ロープCは十分強く, 伸び縮みしないものとする。 (1) 静止しているとき, ロープCの張力は(ア)[ 盤Bが物体Aに作用する抗力の大きさは (イ) × 10°Nであり,地 × 10°Nである。 (2) 地震によって,次第に強くなる上下動(鉛直方向の動き)が起こ り、ある加速度が物体Aにはたらいたら, 物体Aが転倒 (物体Aが 地盤Bに対して,すべり離れなどの動きを起こし、回転して倒れ る状態)を起こし始めた。 その加速度の大きさは (ウ) m/s' であ り、ロープCの張力は(エ) × 10°Nである。 (3) 地震によって、 次第に強くなる水平動が起こり,ある加速度が 物体Aにはたらいたら, 物体Aが転倒 ((2)参照) を起こし始めた。 その加速度の大きさは (オ) [ [m/s' であり, ロープCの張力は (カ) × 10°Nである。 〔東京理科大・改] 力学において最も重要なことは、力を正しく見つけることである。 そして力がわかれば,それらを互いに垂直な方向に分解し、力のつ りあいの式を2つつくる。次に、適当な点のまわりの力のモーメントのつりあい の式をつくる。あとは, 以上の3つの連立方程式を解くだけである。なお, 静止 摩擦力はつねに最大静止摩擦力が働いているとは限らないので、はじめからその 値をμN とおいてはいけない。 まず, 未知数として文字で表し (例えばF), つ 力のモーメントのつりあいの式は, 任意の点のまわりのモーメントで考えてよい りあいの式を解いてFの値を求めてから, FUN の条件を課せばよい。 また, 線上の点を選ぶと, その力のモーメントが0になるので計算が楽である。 が、なるべく計算が簡単になるような点を選べばよい。 すなわち,ある力の作用 力学 17 2

解決済み 回答数: 1
物理 高校生

物体が回転する時の垂直抗力がよく分からないのですが、(ウ)に「転倒し始める時は、T'(張力)=0あるいは、N'(垂直抗力)=0」 とあって、(エ)に「鉛直上向きの加速度なら、T'やN'は0になることはない。」と書いてあります。 張力が回転の向きによって0の時とそうじゃない時... 続きを読む

例題1 剛体のつりあい ① 次の文中の □に適する数値(負でない整数)をそれぞれ記入せよ。 図のように、直方体の一様な物体Aが, 水平と45°の傾斜をもつ地盤Bの上に、質 量の無視できるロープCによって取りっ けられた構造物がある。 物体Aと地盤B とは、接触しているだけである。 4m 45° + 2m C 考え方の キホン B 水平面 物体Aの質量:m=1.0×10℃〔kg〕, 重力 加速度の大きさ:g=10[m/s'], 物体Aと地盤Bとの間の静止摩擦係 数および動摩擦係数:J=1/3,√2の値:1.4とし,ロープCは十分強く, 伸び縮みしないものとする。 (1) 静止しているとき, ロープCの張力は(ア)[ 盤Bが物体Aに作用する抗力の大きさは (イ) × 10°Nであり,地 × 10°Nである。 (2) 地震によって,次第に強くなる上下動(鉛直方向の動き)が起こ り、ある加速度が物体Aにはたらいたら, 物体Aが転倒 (物体Aが 地盤Bに対して,すべり離れなどの動きを起こし、回転して倒れ る状態)を起こし始めた。 その加速度の大きさは (ウ) m/s' であ り、ロープCの張力は(エ) × 10°Nである。 (3) 地震によって、 次第に強くなる水平動が起こり,ある加速度が 物体Aにはたらいたら, 物体Aが転倒 ((2)参照) を起こし始めた。 その加速度の大きさは (オ) [ [m/s' であり, ロープCの張力は (カ) × 10°Nである。 〔東京理科大・改] 力学において最も重要なことは、力を正しく見つけることである。 そして力がわかれば,それらを互いに垂直な方向に分解し、力のつ りあいの式を2つつくる。次に、適当な点のまわりの力のモーメントのつりあい の式をつくる。あとは, 以上の3つの連立方程式を解くだけである。なお, 静止 摩擦力はつねに最大静止摩擦力が働いているとは限らないので、はじめからその 値をμN とおいてはいけない。 まず, 未知数として文字で表し (例えばF), つ 力のモーメントのつりあいの式は, 任意の点のまわりのモーメントで考えてよい りあいの式を解いてFの値を求めてから, FUN の条件を課せばよい。 また, 線上の点を選ぶと, その力のモーメントが0になるので計算が楽である。 が、なるべく計算が簡単になるような点を選べばよい。 すなわち,ある力の作用 力学 17 2

解決済み 回答数: 1
物理 高校生

(2)で写真二枚目の5行目の式 Ry1'=(Mcosθ/2w)×{g(w+h tanθ )-(vcθ^2(h-wtanθ))}=0 があると思うのですが、その直前で「P1を中心として反時計回りに転覆しないためには、重心がP1より右側になければならない。よって、w-h ta... 続きを読む

Chapter 1 力学 Section 1 力と運動 例題 10 等速円運動 ② 図1はレールに乗っている列車を正面から見た 図である。 レールの幅は2w であり, 列車の質量は Mである。 列車の重心Gは、レール間の中心線上 で、レールと車輪の接触点から高さんの位置にあ る。 空気の抵抗や摩擦力などは無視できるものと して、以下の問いに答えなさい。 (1) この列車が,たいらな地面に水平に敷かれた 円形の曲線路を、一定の速さで通過している。 (A) 重力加速度をg, 列車に作用する慣性力を Fとして, 曲線路の内側のレールから列車 が受ける垂直抗力 R1 と, 外側のレールか ら列車が受ける垂直抗力 R-2 を、 それぞれ M, w, g, F, h を使って表しなさい。 図2 (B) 曲線路の半径を , 列車の速さを”として, 慣性力F を M, r, o を使って表しなさい。 ただし,rはレール 幅 2w に較べて十分に大きいものとする。 (C) 列車の速さが大きくなると, R, が減少し,やがて列車は転覆する。 この場合の限界の速さve を wr, g, hを使って表しなさい。 (2) 曲線路では, 列車の安定を増すために、 通常, 曲線路の外側のレー ルを少し高くしている。 図2に示すように, 線路が角度日の傾きを つけて敷かれているとして, 列車が転覆する限界の速さve を w, r, g,h, θ を使って表しなさい。 (三重大) w wo 200 考え方の キホン to 10 I (1) (A)右図のように、車輪とレールとの接点をそれぞれ P1, P2 とし, 車輪がレールから受ける抗力の水平成 分をそれぞれぃたとする。 鉛直方向の力のつりあ いより I 1 円運動の問題では,中心方向外向きの慣性力すなわち遠心力を考慮 すると, 有効な場合が多い。 例えば、人工衛星の中で宇宙飛行士が ふわふわ浮いて見えるのは, 人工衛星から見て, 宇宙飛行士に働く地球の万有引 力と遠心力がつりあうからである。 この問題でも、列車から見た遠心力を考慮す ると, 剛体のつりあいの問題として扱うことができる。 なお、遠心力をむやみに軽んじてはいけない。 現代の物理学では,遠心力 ( 般には、慣性力)といわゆる実在の力 (この場合は, 向心力)とは、同等である I とみなす。 (2)までは、外側のレールは高くしてない。 1 R1+R2-Mg=0… ① P2 のまわりの力のモーメントのつりあいより Mgxw-R1 ×2w-Fxh=0 ② 〔注〕 P1 のまわり: R12×2ω-Mgxw-Fxh= 0 ③ ①② (あるいは, ①, ③ あるいは, ②③ より -Mg- R₁₁ = h R2= g+. 〔注〕この場合の向心力はf+fである。 水平方向の 力のつりあいより、 S 2w (B) 円運動の加速度は2/rだからF=Mv²/r (C) (A)からわかるように, R2は常に正である。 (B)も用いて h Mv² :. R₁₁=Mg-20 =0 :: Vc= F fi+f₂=F=Mv² /r (2) 右図のように車輪がレールから受ける抗力の斜面に垂 直な成分をそれぞれRai', R2' とし、斜面に平行な成分を それぞれだとする。 斜面に垂直な方向の力のつりあ いより P回りの モーメント Mo -F R入 Mcose {g(w+htand)- 2w fr Vo² r rwg h R₂₁ Ra Mg Ri'+R,a'′-Mgcos0-(Mus/r)sin6=0・・・・・・・・ ④ PT P3 Or MY K P2 のまわりの力のモーメントのつりあいより下 Mgx(w+htane)cos-Ra'x2w_(Mu²/r)x(h-wtand) cos0=0 BA w ....... 5 Mg x (cose+ htang.cosa) Pr カ 〔注〕 Pi: Ri' ×20-Mgx(whtand)cos0 (Mur) x(h+wtand)cosB = 0.⑥ ④,⑤ (あるいは、④⑥ あるいは, ⑤⑥ より 列車 の動き Mer x (hcoso-tutanocuse) (h-wtan6 tan 0)} B 10 1-1 力と運動 47

解決済み 回答数: 1
物理 高校生

(オ)解説にある「行きの時間だから、小さい方の解」ってあるんですけど、行きの時間ってなんですか? 往復する運動とかじゃないと思うのですが・・・ (出典:難問題の系統とその解き方)

Chapter 1 力学 Section 1 力と運動 I I 32 坂を下るときか を求めたい。 (エ) 求める値をひとすると, Pの斜面方向の加速度はgsin(だから加速するので 1 Ro My したがって,台が動かないための条件 Fo≦μoRo より vc²-0²=2(gsin)(h/sin) h [別解力学的エネルギー保存則より 左=- I (ク) 前頁の図を参照して 1 1 1 Ho≧ (カ) 前頁の図を参照して (キ) 前頁の図を参照して msin Acoso Fo Ro M+mcos20 A mgh = 21/12/1 ④,⑥より tan 0= (オ) 求める値を」とすると, P の x 方向の加速度は1gだから Ti vc± √√vc²-2µgl 1= vct₁= 2gt² μg x=tôt +=a+² 行きの時間だから, 小さい方の解をとって } 2 ・mvc ∴.ve=√2gh :. t₁ = 1 1 静止系から見てPは Imgと tano からしか力を受けない。 1 つまり、この2つを分解して求まるdads/ 1 ①,③より台などの影響を加味したもの.... 1 Nを消去するとαx= - Mβ/m Mβ=Nsin 0 (ケ)Pの台に対する相対加速度の方向が, 水平と日 の角をなすので (右図を参照) max= Nsin 0 may=mg-Ncos 0 vc-√vc²-2μgl √2gh – √2g(h-µl) (>0) μg ay ax-β may (M+m)β 8 cos = = (M+mcos²0 )g μg -Bt ₂² B ay 28³+²=1×1 Vc = B ay 前ページ √2gh ay hasino ① GBは実質負なので足してるようなも (サ)台の変位をXとし,PがAB間を移動するのに要した時間をもとすると usin01/12ast.x ml cost sin0 ;. | X| = M+m 1 ② αx-B h sing m (M+m)tand 〔注〕 例題 解け (6) f 〔注〕台カ る木 運動 静止系か がα, B, ように求 解説 ニュートンの 方程式という ように、個別 第1法則は必 ある物体 体が絶対的に が何か (ある えるだけであ なれば一般に を設定しなけ 物体に をしているよ 法則が成り立 mβ 25 gb b masine

解決済み 回答数: 1