学年

教科

質問の種類

物理 高校生

(5)のb 解答で最大変位の波形が図fのようになるとありますがなぜですか?※Eのところの説明の正弦曲線の式の理由も教えて欲しいです🙇‍♀️

78.〈正弦波の波形〉 標準問題 図1のように、x軸の正の向きに一定の速さで正弦波が進む。 この波の波長を入振幅 とする このとき,媒質の各点は単振動をする。 いま、時刻 t=0,媒質の各点につ いて図1のような変位が観測できたとして、 次の問いに答えよ。 (1) (a) 位置における媒質の振動の周期を答えよ。 3 位置 c における媒質の速度uと (b) 位置における媒質の変位」と時刻tの関係を図2に示せ。 大値をひとしてよい。 さぁで進むとき, ひと時刻の関係を図3に示せ。 ただし,媒質の速さの最 (2) 図1に示した波に対して振幅, 波長がともに2倍の正弦波がx軸の正の向きに一定の速 (a) 媒質の振動の周期は,図1の波の何倍か答えよ。 媒質の速さの最大値は,図1の波の何倍か答えよ。 (3) 図1は,媒質の変位をy軸へ移して、 縦波を横波のように表しているものとする。このと 時刻 t = 0 において, 図中の位置aからiのうち最も密な点をすべてあげよ ひ 次に、図4のように, 波長 入, 振幅Aの正弦波 (図4中の実線の波) がx軸の正の向きに一 定の速さで進むとともに, 同じ速さでx軸の負の向きに進む同じ波長で同じ振幅の正弦 波 (図4中の破線の波) がある場合を考える。 実線の波の進む速さと波形は図1の波と同じ である。ただし,図4の状態を時刻 t=0 とする。また、図中の位置aからiは等間隔にと られている。 ③ (4) (a) 時刻 t=0 における合成波を図4に示せ。 ※図中の位置からのうち、時における媒質の速さが最も大きな点をすべて 答えよ。ただし,すべての点で速さが0である場合は, 「すべてゼロ」と答えよ。 (a) 位置 dでの媒質の振動の周期は、 図1の波の何倍か答えよ。 位置dでの媒質の変位の最大値は,図1の波の振幅の何倍か答えよ。 (c) 位置gでの媒質の速さの最大値は,図1の波の媒質の速さの最大値の何倍か答えよ。 時刻 = 0 の波形 波の進む向き 変位 y abcde g h 位置 置 x 図1 変位 y 図3 図2 実線の波 破線の波 4 a d e 図 4 位置 X 香川大

回答募集中 回答数: 0
物理 高校生

これの(7)なんですけど!なぜRは一定ってこの文から決めれるんですか?別に送電線を変えればRは変えれることないですか?

136 〈交流の送電〉 交流電圧が送電に広く用いられるのは, 変圧器によって交 ao 鉄心 流電圧を容易に上げ下げできるためである。 ここでは,電力 損失のない理想的な変圧器を考える。 図1のように, 鉄心に 2つのコイル (1次コイルの巻数がn, 2次コイルの巻数が n)を巻く。このとき, 1次コイルと2次コイルの間の相互イ ンダクタンスはMであった。 U1 b 11 112 1次コイル 図 1 2次コイル ⊿の変化するとして、次の設問に答えよ。 なお、設問(1)~(4)は n1, nz, M, ⊿t is ⊿の 時間 4tの間に1次コイルに流れる電流 in が ⊿i だけ変化したとき, 鉄心に生じる磁束が 中から必要な文字を用いて答えよ。 1次コイルに生じる誘導起電力の大きさを求めよ。 (2)2次コイルに生じる誘導起電力をv2とする。このときの比の大きさ n2 を用いて表せ。 〔A〕 V₂ [V] V2 をい V₁ (3) 2次コイルに生じる誘 導起電力 (端子 dを基準 とした端子 cの電位) v2 をMを含む式で表せ。 図 (4) 1次コイルの電流を 図2のように変化させた 2 10 5050 0 1 2 3 4 5 6 -5 t(s) S 10 0 1 2 3 4 5 6 7 t〔s] 図2 -15 図3 ときの時間変化のようすを図3に図示せよ。ただし,電流żの向きは,図1に示した 矢印の向きを正とし, M=5H (ヘンリー) であるとする。 図4のように,発電所 発電所 から送りだされた電圧 V1, 電流 L, 電力Pの交 流は,変圧器Aによって 電圧 V2,電流Izの交流 に変えられ,抵抗Rの送 電線で消費地近くの変圧 交流発電機 変電所 変電所 送電線 12 鉄心 鉄心 消費地 変圧器 A 抵抗 R V2 変圧器 B 抵抗 1次コイル 2次コイル 1次コイル 2次コイル 図 4 器Bに送られる。 送電線の終端の電圧は V3 である。 ただし, 電圧 V1, V2, V3, 電流 I, Iz は実効値である。また,ここで,電力は1周期についての平均の電力であり、1次側,2次 側ともに電圧と電流の実効値の積で表されるとする。 また, 変圧器 A, B はともに電力損失 のない理想的な変圧器である。 (5) 電圧 V3 を P, V2, R を用いて表せ。 (6)発電所から送りだされた電力Pと送電線の終端での電力P' の比,すなわち, e=- 送電効率という。送電効率e を P, Vz, R を用いて表せ。 送電効率を高くするためにはどうすればよいと考えられるか。簡潔に述べよ。 を P [九州工大 改〕

回答募集中 回答数: 0
物理 高校生

五番の回答が2個あるのは後を見すえてでしょうか? また、六番も分かりません

6 加速度運動 5. 方投射と自由落下等加速度直線運動〉 同時に動きだした2つの小球の衝突について考える。 図1、図 2のように、水平方向右向きに。 鉛直方向上向きにy軸をと る。時刻10 で 原点Oから小球Pをx軸の正の向きから角 (0°<8<90°)の向きに、速さ(0) で投げ出す。 ここでは 反時計回りを正とする。 重力加速度の大きさを」として、次の間 いに答えよ。 ただし、小球はxy面内でのみ運動し、空気抵抗は ないものとする。 まず。 図1のように小球を投げ出すと同時に、 小球Qを 標 (a,b)から静かに落下させた。ただし、40b>0 とする。 (1) 投げ出した小Pが小球Qと衝突するまでの時刻におけ る小球Pの座標を求めよ。 (2) 投げ出した小球Pがによらず小球Qと衝突するための tan を求めよ。 次に、 図2のように, 原点を通り軸の正の向きから角 (0°<a<90°傾けた、なめらかな斜面を設置した。 ただし, α は時計回りを正とする。 小球Qを原点Oに置き、 小球Pを投げ出 すと同時に小Qを静かにはなすと, 小球Qは斜面をすべり始め た。 小球 P h 18 a 図1 小球 Q 図2 小球 Q 小球 P 斜面 (3) すべり始めた小球Qが小球Pと衝突するまでの時刻における小球Qの座標を求めよ。 (4) 投げ出した小球Pが、によらず小球Qと衝突するための tan を求めよ。 6. <斜面への斜方投射> 図のように水平と角度 0 (0) をなす斜面上の原点O から、斜面と角度をなす方向に初連量の小 球を投射した。 原点から斜面にそって上向きにx軸を. 斜面から垂直方向上向きにy軸をとる。 斜面はなめらか で十分に長いものとする。 重力加速度の大きさを」とし、 空気抵抗はないものとする。 また、角度0とは <8+α < 21/2の関係を満たすものとする。 〔23 富山県大〕 (4) 小球が斜面と衝突する時刻を求めよ。 (5) 小球が斜面と衝突する点の原点からの距離を求めよ。 (6)距離が最大となる角度αを求めよ。 小球が斜面に対して垂直に衝突した場合について考える。 (7)角度αと8の関係式を求めよ。 (8) 小球が斜面に衝突する直前の速さをを用いて表せ。 7. 〈斜面をのぼる小球の運動> 水平な面(下面)の上に、高さんの 水平な平面(上面)が斜面でなめらか につながっている。 図に示すように x.y.y軸をとり、斜面の角度はx軸方向から見た断面 である。 下面上でy軸の正の向きに 軸とのなす角を0. として、質量 mの小球を速さで走らせた。 な お, 0 <6<90° かつ0 とし、小球は面から飛び上が 力加速度の大きさをgとし、 斜面はなめらかであるとす 次のアイに入る最も適当なものを文末の ウクに入る数式を求めよ。 (1) 斜面をのぼりだした小球は、x軸方向にはア る。 小球が斜面をのぼりきって上面に到達したとき ウy成分の大きさはエ(のぼりきる前 また、斜面をのぼり始めてから上面に到達するまでに 小球の進む方向とy軸とのなす角度を とすると, なる。 (2) 初速度の大きさを一定に保ちながら, 0, 0 さいうちは小球は上面に到達した。 しかし. 8, があ ずに下面にもどってきた。 このときのの満たす 0.0 のとき小球が斜面をのぼり始めてから再 クである。 ア イの選択肢 時刻における小球の位置のx座標, y座標を示せ。 時刻における小球の速度の成分 成分を示せ。 小球を投射した時刻をt=0 とし, 小球が斜面に衝突するまでの運動について考える。 小球にはたらく重力の成分 成分を示せ。 ① 等速度運動 ②加 ③ 加速度 -g cos の等加速度運動 ④ 加 ⑤ 加速度 α- sin 9 の等加速度運動 ⑥ 加 加速度 α- 9 tano この等加速度運動

回答募集中 回答数: 0
物理 高校生

(6)で磁場による力が働いているのにエネルギー保存則が成り立つ理由を教えてください

(4)(ア)から(エ)の全区間でコイルに生したジュール熱の総量を求めよ。また、この総量とコイ ルの速さを一定に保つために作用させた外力との関係を述べよ。 129. 〈斜面上を動く正方形コイルに生じる誘導起電力〉 図のように、水平面となす角度が ⑥ (0x0<)の十分 長い斜面がある。この斜面に、質量がm, 電気抵抗が R, 磁場 B JAC [21 高知大改 A D 1 m.R B M x 0 1辺の長さがdの正方形の1巻きコイル ABCD を置く。 いま、斜面にそって下向きをx軸にとる。斜面上のx≧0 この領域には、面と垂直上向きに磁場があり,その磁束密度 の大きさはxの関数として, B=kx で与えられる。 こ ここでは正の定数である。 コイルの自己インダクタンス, およびコイルと斜面の間の摩擦力はないものとする。 重力加速度の大きさをgとする。 初めに、コイルの辺BCがx軸と平行で,辺AB と辺 CD の位置が,それぞれ, x=0 と x=dになるように置いた。 この状態から, コイルを静かにはなしたところ, コイルは辺 BCがx軸と平行なまま。斜面にそって下向きに動きだした。 辺ABが位置 xにあり,速さで運動している瞬間について,(1)~(6)に答えよ。答えの式 は,m,g, R, k, x, devのうち必要なものを用いて表せ。 (1) 辺ABの両端に生じている誘導起電力の大きさ V」を求めよ。 また, 電位が高いのは端A と端Bのどちらか答えよ。 (2) コイルに生じている誘導起電力の大きさ Vを求めよ。 Xxx dayRoux よって、 E=Bwx OPの電力の大きさV[V] とれるから V-12/Baw まるようになるか OPのである。 P(W) 抵抗で R に流れる電流の大きさ であるから 受ける力の式「F= (4)の向きが②だから、フレ 仕事率(W) は、 (7) Baw Ba 131〈相互誘導〉 2 AR ファラデーの電磁誘導の法則 比較する。 が流れているコイル <コイル」を貫く磁束のは、 SISL N₁ 電流が

回答募集中 回答数: 0