学年

教科

質問の種類

物理 高校生

(3)の解説の変化量のところがわからないです。変化量はどうやって出しているのですか

したがって, 比熱の比は、 例題 S 混合気体 ~ Sast 9912 (5)融解曲 25 29 容積 2.0L, 4.0Lの容器 A, Bが,図のよ うに連結されている。 容器Aにはメタン, 容 器Bには酸素を入れて,ある温度にすると, 圧力はそれぞれ3.0×105 Pa, 6.0×105 Pa だった。コックを開けて気体を混合し、点火 して完全に反応させた後, 元の温度に戻した。 連結管やコック,および, 生じる水 の体積や、水蒸気の蒸気圧は無視してよい。 分子量 CH4=16.0,O2=32.0 点火装置 容器B A 20 想気 (a) f 2.0L 4.0L コック (b) 2 の の (c)】 (1) 反応前の混合気体中のメタンの分圧は何 Paか。 (d) (2) 反応前の容器内の全圧は何Paか。 (3) 反応後の容器内の全圧は何Paか。 KeyPoint 点火前後で温度一定: メタンと酸素のそれぞれにボイルの法則が成立する。 同温同体積 : 圧力比は物質量比に等しい。 ●センサー ●温度一定より, ボイル の法則 piVi=P2V2 ●全圧=分圧の和 ●同一容器内の気体の圧 力比は物質量比に等し い。 →反応による変化量を 圧力で示す。 重要 (1) C 解法 (1) (2) 気体についてボイルの法則が成立する。 混合 後の各気体の分圧を PCH4, Po2 とすると, 混合気体の体積は 6.0Lなので, (2 CH4 : 3.0×10 Pa×2.0L=PcH.〔Pa〕×6.0L PcH=1.0×105 Pa O2 :6.0×10 Pa×4.0L=po〔Pa〕×6.0L Po2=4.0×10 Pa 全圧は,1.0×105 Pa+4.0×10°Pa=5.0×10 Pa (3) 反応前後の物質の量的関係を分圧で考える。 08. CH4 +202 CO2 +2H2O (s) 反応前 〔Pa〕 1.0×105 4.0×100005 変化量〔Pa〕 -1.0×10 -2.0×105 反応後 〔Pa〕 0 2.0×105 1.0×105(無視) 反応後の全圧は、2.0×10 Pa+1.0×105 Pa=3.0×10 Pa 解答 (1)1.0×10 Pa (2)5.0×10 Pa (3)3.0×105 Pa [mL〕| | ル・シャルルの法則 重要

回答募集中 回答数: 0
物理 高校生

問5の(5)問7の(3), (4) の解き方教えてください。 答えは 問題の順に3.7w/s2 , 5.0s , 5.4×10^6 J と 1.5kWh になります。

問5. あらい水平面上に置かれた重さ20Nの物体を水平に引く。 物体と面との間の静止摩擦係数を0.30 重力加速度を9.8mmと する。 (1) 1.0Nの力で引いたところ、 物体は動かなかった。 このとき物体にはたらく静止摩 擦力の大きさは何Nか。 (2) 2.0N の力で引いたところ、やはり物体は動かなかった。この時物体にはたらく 静止摩擦力の大きさは何Nか。 (3) 3.0N の力で引いたところ、やはり物体は動かなかった。 この時物体を引く力のした 仕事は何Jか。 (4) 水平に引く力がある値 f〔N〕をこえた直後に物体は動きだした。 fo〔N〕を求めよ。 (5) 9.0N の力で引いたところ、 1.5N の動摩擦力を生じた。 この物体に生じる加速度は 何mlか。 問6. 水平面と30°の角をなすなめらかな斜面にそって質量 20kg の物体をゆっくり引き上げる。 重力加速度の大きさを 9.8m/s2とする。 (1) 引き上げるために必要な力の大きさ F, [N] を求めよ。 (2) 斜面にそって10m 引き上げるのに必要な仕事 W 〔J〕 を求めよ。 (3) この物体を、同じ高さまで斜面を利用せず鉛直上方に引き上げるのに必要な力の大 きさ F2〔N〕と、その力がする仕事 W2〔J〕 を求めよ。 問 7. 次の問いに答えよ。 (1) 質量 25kg のトランクを水平方向に20N の力で引いて, 力の向きに 20m 動かす のに 10秒かかった。 仕事率を求めよ。 (2) 揚水ポンプを使って, 高さ 9.0mのタンクに水6.0 × 10kgをくみ上げるのに 49 分かかった。 仕事率を求めよ。 重力加速度の大きさを9.8m/s²とする。 (3) 質量1.0kgの物体を 5.0N の力で床と水平に押して 3.0m移動させた。 この仕事率 が3.0W であるとき、 かかった時間は何sか。 (4) 3000Wで30分間仕事をすると、 何Jになるか。 また、それは何kWh か。 問8 質量 1.0kg の直方体の物体がある。 物体の面 a,b,c を下に して床に置くとき, それぞれの場合に, 床が物体から受ける圧力 Pa, Pb, Pc [ Pa] を求めよ。 重力加速度の大きさを 9.8m/s2とする。 a b 0.70m² 0.56m 10.50m

解決済み 回答数: 1
物理 高校生

なんで失うとこういう式なるのか分からないのと、電位の向きがP→Cの向きの理由がわかりません

電させる。気 Pa以下の圧 は②極 1) 物体によっ 界によって した。後に、 1-4 + Vの電圧 じる加速 14 て水平に を入れる ただし, の大き 0.26 めよ。 トン効 [26 ただし, 27 陰線の粒子は原子よりはるかに軽いので、原子の構成要素だろうと推測された。 光電効果 右図の光電管装置で, 金属板 Cへの入射光の波長を 変えて実験したところ、m〕 より長い波長の光では光 果が起こらなかっ気量光速を4m/s), ブランク 売 c 数をn's], 電子の電気量を fe[] とする。 (1) 金属板Cの仕事関数 W〔J〕 はいくらか。 の最大値K [J] はいくらか。 [ (2) 波長入[m〕 (入<入) の光を入射させた場合.Cから飛び出す電子の運動エネル (3) 波長の光を当て, PC間の電圧を0Vから少しずつ増加させたところ、電圧 この電圧 V を 入 入.h.c. 題 93 SP 問題文を読み解く。 | (1) [入 〔m〕 より長い波長の光では光電効果 が起こらなかった。」→「波長入 [m]のとき の光子のエネルギーが, 金属板の仕事関数 に相当する。」 (3) 「電圧がVo〔V〕 になったとき, 電流が流 れなくなった。」→「電子の運動エネルギー のほうが電界のする仕事の大きさよりも大 きい間は電流が流れる。」 しかし,電界が 電子にする仕事の大きさと, 電子の運動エ ネルギーが等しくな 11/12m -mv² > eVo り,さらに電子の運 動エネルギーのほう が小さくなると,電 流は流れなくなる。 センサー 142] になったとき。 流が流れなくな を用いて表せ。 また,このとき,PとCではどちらの電位が高いか。 光の粒子性と波動性 E=hv, c=và センサー 143 光電効果における, 光電子 の運動エネルギーの最大値 Ko 光子のエネルギーhv, 仕事関数Wの関係式 Ko=huW 11/12m Je -mv² < eV, P 光 PHO wwwwwwww 428429438 SP 関係するグラフや図を思い出す。 光電効果とは, 光が当たると 0 -W 金属 (1) (2) 電子の運動 エネルギー Ko 金属の限界 振動数 vo 直流電源 電子が 飛び出す 「光の振動数 v Wは金属の仕事関数 グラフは、金属から飛び出す電子 の運動エネルギーの最大値を表す。 - (J) 【解答 (1) 光の波長が入。 のときの振動数をvo [Hz] とすると, he W=hvo, c=vo より W=hv= 20 (2) 光の波長が入のときの振動数をv [Hz] とすると. hc (λ₁-2) Ko=hv-W= he he 2 20 220 (3) (2)の運動エネルギーをもった電子が電界から -eV [J] の 仕事をされて運動エネルギーをすべて失うので hc (-A) -eVo=0-Ko= Mo hc (-A) ゆえに, Vo= -(V) edda 電界は、電子にPCの向きに力を及ぼしながら、負の仕事 をしたので, Cのほうが電位が高い。 ⑥ 27 B (例 OF 30 30 粒子性と波動性 269 W (2) (

解決済み 回答数: 1
物理 高校生

この問題pとΦとΘ使って良いと書いてないのですが 誤植ですか?

条件 していることを確かめよ。 (2) 0=30°において, (3) 0°30°の範囲内で角度を大きくしていく間, 反射された電子線が強くなるの (16. 福岡教育大改) は何回あるか。 線が物質中に入射し, コン プトン効果がおこって電子が散乱された。 図のように, 入射y線と散乱線の波長をそれぞれ入,X', エネル ギーをE,E' とし,散乱された電子の質量をm,運動 量をpとする。また,入射y線の方向に対する散乱角 を, y線と電子でそれぞれ0,とし, プランク定数 をh.光速をc とする。 次の各問に答えよ。 (1) 入射y線,散乱y線, 電子からなる系において,入射y線の入射方向とそれに直角 な方向について,それぞれ運動量保存の式を示せ。 入, i', h を用いて答えよ。 h (1-cose) と表される。このとき,散乱線の mc やや難 585. コンプトン効果 (2) 散乱y線の波長 入' は, i'=入+ エネルギーE'が,E' = E mc2 E 1+ -(1-cos) 入射線 A, E となることを示せ。 物質 散乱線 X. E 0 8 m.p (3) 散乱された電子のエネルギーが最大になる角6を求めよ。 (4) セシウム137Cs から発生するエネルギー 662keVァ線を入射させる。 (3)の条件 の場合,電子に与えられるエネルギーは何 keV か。 桁で求めよ。 mc² = 511keV とし,有効数字 2 (11. 慶應義塾大改) 例題49 ヒント 584 (2) 隣りあう2つの結晶面で反射する電子線の経路差は, 2dsin30°である。 585 (3) エネルギー保存の法則から、E'が最小のときに電子のエネルギーが最大となる。

未解決 回答数: 1