学年

教科

質問の種類

物理 高校生

高校物理電流と磁場の質問です 磁場の向きを考える時で右ねじの法則を使う時、HaベクトルとPAがなす角は90°と決まっているのですか?鉛筆で書いたような、HaベクトルとHbベクトルがなす角が60°にはならないのですか?

267 直線電流がつくる磁場の合成 十分に長い2本の導線 A,Bを2d [m] 離して平行に張る。 図のように,Aには紙面の 裏から表の向きにI [A] の電流を,Bには表から裏の向きに I [A] の電流を流した。図中の点Pでの磁場の強さ H [A/m] を 求めよ。 P 60° 例題 55 \60 60° 2d 267 B8 十分長い直線電流I〔A〕 が距離[m] の点につくる磁場は、 電流の向きに右ねじが進むようにねじ を回す向きで,その強さは H= [Am] となる。 磁場はベクトルであるから、点Pでの磁場は各 ここがポイント 2πr [VIT 直線電流がつくる磁場を合成して求める。 導線Aと導線Bが点Pにつくる磁場とは 右図のようになる。 導線Aと導線Bに流れる電流 はどちらも「[A] で, AP-BP=2d[m] である から、点Pにつくる磁場の強さは直線電流がつく る磁場の式 「H=- H HA HB 30° 30° より 2πr 60 I I HA=Hn= = [A/m] 2×2d And 点での磁場は,Hと77日を合成した磁場で -2d- B に平行な方向の成分は同じ大きさで逆向きなので打ち消しあい, 合成磁場 の向きは線分ABに垂直上向きになる。 H』とπの線分AB に垂直な 方向の成分は Dを Hasin30°=Hasin30°=ax/[A/m]5 であるから, 点Pでの磁場の強さは 1 別解 下図のように、 磁場 と君がな す角は60°である。 Hは豆 とTBを2辺とする平行四辺 形の対角線なので ∠PRQ=60° となり, △PQR は正三角形である。 ゆえに H=H= -[A/m] 4nd R 60H 60° 60° 060° #ダイ I 1 I H=2x = 4rd 2 And [A/m] (1+1)×0.0+0 HA H B P S

未解決 回答数: 0
物理 高校生

まるされている部分の式の変換がわかりません 誰か教えてくれませんか

(mi+m2)a=mag-mg sin0 と、簡単にaが求められる。(前式⑥が系の運動方程式) A,Bの運動量の関係を考える場合がある。 張力を用いないでそれ を求めるには, 運動量はベクトルだから, A,Bを一直線上にする必 要がある。 上のように考えなおすと、考え易い。 masing my IB [B] 二物体間の糸の張力を求めるには,各物体の運動方程式を,直接働く力で作れ、 サイド上のように二物体が糸でつながれ動く問題では、各物体に直接働く力を考えよ. (例題) 定滑車Cに糸をかけ、 その両端に質量 Mの物体Aと質量mの物体 Bを図のようにつるす, Bは地上にあり, Aは地上から高さんのところに ある。ただし糸は長さが変わらず、滑車や糸は十分に軽く、滑車の摩擦は、 ないものとする。 また Mm, 重力の加速度をgとする物体Aを静 AQM に放して落下させるとき、次の(a)~(g) の値を計算する式を書け。 (a) A をつるしている糸の張力T 張力 F (c) Aの加速度α h (b) 定滑車Cをつるしている糸の (d) Aが地面に達する瞬間の速さ (f) Bが達する最高点の地面から (e) Aを放してから地面に達するまでの時間 の高さH(g) Bが高さんの点を通過してから最高点を経て再び高さんの点を通る までの時間 (東薬大, 類多数校) 解答] 運動方程式は Aにつき Ma=Mg-T …… Bにつき ma=T-mg (a) 上式からを消去すれば, ② (①xm-②XMによりかかり 2Mm T= M+m g 圈 なぜ (b) 滑車が受ける力は、上の糸に引き上げ られる力F, 物体をつるした糸に引き下 げられる力TとT これはTとTに等しい。 (d) この加速度で,高さん落下したときの 速さは v2=2ah より v=v2ah= M-m 12gh- 容 M+m 1 T' T A a Mgh a T' (e) それまでの時間は h=//zatz より =√2h = √2h M+m t=, a g M-m (f) Aは地面に衝突して糸はゆるみ, Bは 高さんの所で速さで投げ上げられる. そこから上る高さをん とすれば, B Img v2=2gh' (d)から 22 2gh M-m M-m h'= = 2g 2gM+m M+m ∴. H=h+h'=h1+ =h- M-m M+m 2Mh M+m 0=v-gt から 1'=2t=2=2~ 2h M-m 9 g M+m つり合っているから F-2T"=0 4Mm .. F=2T= g 答 M+m (c) ① ② からTを消去すれば、 M-m g M+m ●なぜ、 (g) ゴイド 上のように、滑車をつるす糸の張力を求めるには、滑車Cに着目し、そのつり合いを考えよ. - 天びんにつるした滑車に糸をかけ端に結んだが動く場合 脂針 余裕ができたらやる、 例題) 天びんの一方の腕に滑車Cをつるし、糸をかけ、質量2mmの A,B を結ぶ、はじめ滑車に制動をかけて静止させ, 天びんをつり 合わす。 制動を除き, A. B が動いているとき、 天びんをつり合わす AB A

未解決 回答数: 1