学年

教科

質問の種類

物理 高校生

(3)の青ペンのところがわかりません。 どうして変位を-4mとして解くのですか

問題 03 相対速度・ 相対加速度 第1章力学 物理基礎 公式 相対加速度 wwwww (Aに対するBの相対加速度)(Bの加速度) (Aの加速度) \ www Aが基準 www 基準を引く 図2のv-tグラフの傾きから, Aの加速度は1.0[m/s], Bの加速度 はαB=2.0〔m/s2] と読み取れるので, 求める相対加速度4AB 〔m/s2] は. aAB = AB-AA= -2.0-1.0=-3.0[m/s2] (3)(1),(2),Aに対するBの相対速度, 相対加速度を求めた。 これより, 時 刻 t = 0 におけるAに対するBの運動のようすを図示すると、下図のように なる。 図1のように,一直線上で運動して いる物体AとBがある。 時刻t=0に おいて,物体AとBは4.0m離れてい て, v-tグラフ (図2) のような等加速 度直線運動をしていた。 ある時間後, 物体AとBは衝突した。 ただし,速度 と加速度は右向きを正にとるものとす る。 有効数字2桁で答えよ。 速度 物体A 0- -4.0m- 図1 2 速 1 物体A 0 V [m/s] 物体B (1)時刻 t = 0 において, 物体Aに対 するBの相対速度はいくらか。 物体B 0 (2) 物体AがBに衝突するまでの物 体Aに対するBの相対加速度はいくらか。 (3) 物体AとBが衝突するまでの時間はいくらか。 0 1 2 経過時間[s] <t=0のとき> 図2 v-tグラフ A (静止) f[s]と同じである。s=uot + 1/2atより、 13.0m/s2 B 1.0m/s - x(m) (4) 物体AとBが衝突する直前の相対速度の大きさはいくらか。 -4.0 0 <弘前大 > はじめのBの位置をx=0[m] とし, 右向きを正とすると, はじめのAの 位置はx=4.0 〔m〕 になる。 (3)で求める時間は, 初速度をv1.0 [m/s], 加速度をa=3.0[m/s2] として, 変位s=4.0[m] となるまでの時間 d₁o 1 -4.0 = 1.0.++ ( (-3.0) t2 2 相対速度 (3t+4) (t-2)=0 これより=-1/3.2 t= 運動している観測者から見た物体の運動を相対運動という。 (解説) (I)「Aに対するBの相対速度」とは, 「Aから見たBの速度」 すなわち「Aと一緒に運動する観測者から見たBの速度」のことである。 公式 (Aに対するBの相対速度)= (Bの速度)(Aの速度) ww Aが基準 wwwwwww 基準を引く 図2のv-tグラフより 時刻t=0において, Aの速度はv=0[m/s], B の速度はv=1.0 [m/s] である。 よって, 求める相対速度 VAB [m/s] は, VAB=UB-VA=1.0-0=1.0[m/s] (2)速度と同じく, 加速度も相対加速度を考えることができる。 この式 (tについての2次方程式) を解くと, t>0なので,t=2= 2.0[s] を選べばよい。 (4) 衝突する直前の相対速度vAB 〔m/s] は,v=vo + atより よって, VAB'=-5.0[m/s] 求める相対速度の 「大きさ」 は, 5.0m/sである。 UAB′ = 1.0+(-3.0) 2.0 (1) 1.0m/s (2)- -3.0m/s2 (3)2.0s (4)5.0m/s 1. 速度 加速度 11

回答募集中 回答数: 0
物理 高校生

物理 132番の(ケ)について質問です (ケ)のときコイルの誘導起電力はi1の向きと同じなので符号は正と考えたのですが回答では負でした。なぜ負になるのかを教えてください🙏

抵抗 R O スイッチS に比べて増加するか、するがす (i) コイル2の長さを軸方向に押し縮めた後に、 同じ実験をした。 (i) 鉄心を引き抜いた後に、同じ実験をした。 132. 〈コイルを含む直流回路> 〔19 大阪府大 改 からの距離 (m) うう。 導体棒中 ■における電場 反時計回りに, 電力が生じる。 印b の向 ■に電流が流れ 図1の矢印 はたらくと考え である。 [15 同志社大 〕 次の文章のアコに当てはまる数式または数値を 答えよ。 また、サに当てはまる語句を答えよ。 h c L b Ix d f R 図に示すように抵抗とコイルをつないだ回路で, スイッ チSを閉じたり開いたりしたときに回路に流れる電流を考 えよう。 電池の起電力をE. コイルの自己インダクタンス L. 2つの抵抗の抵抗値は図のようにr, Rとする。 電池 と直列につながれた抵抗値の抵抗は電池の内部抵抗と考 えてもよい。 また, 導線およびコイルの電気抵抗は無視できるものとする。 a +r ch S E スイッチSを閉じた後のある時刻にコイル, 抵抗値Rの抵抗を図の矢印の向きに流れる電 流をそれぞれ I, と書くことにする。 このとき, 抵抗値の抵抗を流れる電流はア となる。 経路 abdfgha についてキルヒホッフの法則を適用すれば、 電池の起電力と回路に 流れる電流の間にはE=イの関係が成りたつ。 一方,このときコイルを流れる電流が 微小時間 4t の間に 4 だけ変化したとすると, 経路 abcegha についてキルヒホッフの法則 を適用すればE= ウ の関係が得られる。 スイッチSが開いていて回路に電流が流れていない状態でスイッチSを閉じたとき、その 直後に回路に流れる電流は, L=エ=オとなる。したがって、スイッチSを閉 じた直後にコイルに生じる誘導起電力の大きさはE, r, R を用いてカと表される。 方, スイッチを閉じてから十分に時間が経過した後にコイルに流れる電流は、ムキ であり,このときコイルにはクだけのエネルギーが蓄えられることになる。 to D

解決済み 回答数: 1
物理 高校生

解き方がほんとにわからないです

1. 電池の起電力と内部抵抗を調べるために、電池と可変抵抗を図のように 子 する。 はじめ可変抵抗の抵抗を最大にしておき、スイッチを入れ、 [EV[V]と 抗値を少しず [A]を測り、スイッチを切る。 つ小さくしながら同じ測定を繰り返す。 すると図9のような結果が得られた。 V(V) 15.0 10.0 5.0 図 A 0 1.0 2.0 3.0 I(A) 9 wwwwww 4 電池の起電力 E[V) と内部抵抗 (Ω)はそれぞれいくらか。 それぞれの解 群のうちから正しいものを……つずつ選べ。 E- 6 5 の解答群 ① 2.5 ② 5.0 7.5 ④ 10 ⑤ 12.5 15 6 の解答群 10 ② 2.5 5.0 ④ 6.0 ⑤ 10 5 可変抵抗で消費される電力」 P(W) は端子電圧の関数としてどう表され るか。 次の①~④のうちから正しいものを一つ選べ。 0 + V₂ 7 © (E-V)V Ⓒ + Ev +-v 6 電力Pが最大になるのは端子電圧がいくらのときか。次の①~④のう ちから正しいものを一つ選べ。 V= 8 1 0 ④ E 2. 追加 問2抵抗値が R の抵抗二つと起電力がEの電池二つを, 図2の回路(a), (b)の ように接続する。 それぞれの回路で電流計を流れる電流の大きさを1. Iv とするとき, I In の大小関係として正しいものを、下の①~⑩のうち から一つ選べ。 2 EL Iold 抵抗一つを 電池一つに つないだとき の電流とする。 (b) (a) 図2 ①=v=Lo 21<<1 1=1<1 ⑤1<<1 ⑥1=1<1 ⑦ ⑧1.<<I 1<I<h 1<1-1

未解決 回答数: 1
物理 高校生

物理の質問です。 参考書のドップラー効果の公式の導出で分からない所があります。添付した画像が参考書の説明です。 c-v_s=f₀λ' (λ'=c-v_s/f₀) とありますがこれは波の進む速さの式と捉えることも出来ますよね。つまり、この式は振動数がf₀で、波長がλ'の波... 続きを読む

332 Chapter 13 ドップラー効果 13-2 音源が動くドップラー効果 13-2 音源が動くドップラー効果 静止した音源が音を発した1秒後 c(m) ココをおさえよう! 振動数」 ボクが最後尾 振動数∫の音源が,速さで近づくときに観測される振動数fは f=- 遠ざかる場合はf=cfusio ここでは,音源が動く場合のドップラー効果 (救急車の例) について考えます。 音源が発する音の振動数をfo [Hz] とします。 US このとき,音源は1秒間にf個の "波くん” を生み出しますね。 まずは音源が止まっている状態で,音を鳴らしている状況を考えましょう。 音速をc [m/s] とします。 音速というのは波の速さのことですから, 1秒間を切り取ると, 最初に発された“波くん"はc [m] 進み, 1秒後には音源からc〔m〕 までの間に fo個の“波くん”がいることになります。 速さ [m/s]で走る音源が音を発した1秒後 c-u (m) 振動数 速さい ボクが最後尾 先頭のボクは 目の速さは だからね 先頭のボクは スリムに なっちゃった 3 ということは、“波くん”1個分の幅は,入=〔m] と表すことができますね。 fo 今度は音源が速さで走りながら, 音を発しているとします。 1秒間を切り取ると, 最初に発された波くんはc 〔m〕 進みます。 同じ個の 1 “波くん”が ギュッと認められた んじゃ 静止の場合 c=foλ www fo 1秒後に。個目の”波くん” を発し終わるまでに,音源は距離 vs だけ動くので, c-vsの間に, fo個の“波くん”がいることになりますよね。 〔m〕に個の“波くん” fo 音源が走る場合 〔ml〕に個の“く” 補足 音の速さ [m/s] は音源の速さに関係ない。 →空気をベルトコンベアー、音を荷物と考えるとよい。 ダダダダ よいしょう このとき波くん1個分の幅, すなわち波長は入となって短くなります。 fo 止まって発した音と、走りながら発した音では、波長が変わってしまいました。 この波長の違いが音の高低の違いの原因になるのです。 続きはp.334で説明しま す。 ここで疑問に思っている人もいるかもしれないので補足です。 音源がで走りながら発されても、音の速さ とはならずにcのままです。 (先頭の“波くん"はc [m] しか進んでいませんね) これは、音が空気の振動なので 速さで 空気に伝わった瞬間に音源の影響を受けなくなるためです。 空気を速さのベルトコンベアー 音を荷物に例えるとわかりやすいですよ。 止まってベルトコンベアーに荷物を乗せても、走りながらベルトコンベアーに 荷物を乗せても荷物の進む速さは同じになりますね。 そんなイメージです。 走って乗せても、止まって乗せても 速さ c[m/s] ← 手をはなせば、物は同じ速さで進む

未解決 回答数: 1
物理 高校生

物理の質問です。 参考書のドップラー効果の公式の導出で分からない所があります。添付した画像が参考書の説明です。 c-v_s=f₀λ' (λ'=c-v_s/f₀) とありますがこれは波の進む速さの式と捉えることも出来ますよね。つまり、この式は振動数がf₀で、波長がλ'の波... 続きを読む

332 Chapter 13 ドップラー効果 13-2 音源が動くドップラー効果 13-2 音源が動くドップラー効果 静止した音源が音を発した1秒後 c(m) ココをおさえよう! 振動数」 ボクが最後尾 振動数∫の音源が,速さで近づくときに観測される振動数fは f=- 遠ざかる場合はf=cfusio ここでは,音源が動く場合のドップラー効果 (救急車の例) について考えます。 音源が発する音の振動数をfo [Hz] とします。 US このとき,音源は1秒間にf個の "波くん” を生み出しますね。 まずは音源が止まっている状態で,音を鳴らしている状況を考えましょう。 音速をc [m/s] とします。 音速というのは波の速さのことですから, 1秒間を切り取ると, 最初に発された“波くん"はc [m] 進み, 1秒後には音源からc〔m〕 までの間に fo個の“波くん”がいることになります。 速さ [m/s]で走る音源が音を発した1秒後 c-u (m) 振動数 速さい ボクが最後尾 先頭のボクは 目の速さは だからね 先頭のボクは スリムに なっちゃった 3 ということは、“波くん”1個分の幅は,入=〔m] と表すことができますね。 fo 今度は音源が速さで走りながら, 音を発しているとします。 1秒間を切り取ると, 最初に発された波くんはc 〔m〕 進みます。 同じ個の 1 “波くん”が ギュッと認められた んじゃ 静止の場合 c=foλ www fo 1秒後に。個目の”波くん” を発し終わるまでに,音源は距離 vs だけ動くので, c-vsの間に, fo個の“波くん”がいることになりますよね。 〔m〕に個の“波くん” fo 音源が走る場合 〔ml〕に個の“く” 補足 音の速さ [m/s] は音源の速さに関係ない。 →空気をベルトコンベアー、音を荷物と考えるとよい。 ダダダダ よいしょう このとき波くん1個分の幅, すなわち波長は入となって短くなります。 fo 止まって発した音と、走りながら発した音では、波長が変わってしまいました。 この波長の違いが音の高低の違いの原因になるのです。 続きはp.334で説明しま す。 ここで疑問に思っている人もいるかもしれないので補足です。 音源がで走りながら発されても、音の速さ とはならずにcのままです。 (先頭の“波くん"はc [m] しか進んでいませんね) これは、音が空気の振動なので 速さで 空気に伝わった瞬間に音源の影響を受けなくなるためです。 空気を速さのベルトコンベアー 音を荷物に例えるとわかりやすいですよ。 止まってベルトコンベアーに荷物を乗せても、走りながらベルトコンベアーに 荷物を乗せても荷物の進む速さは同じになりますね。 そんなイメージです。 走って乗せても、止まって乗せても 速さ c[m/s] ← 手をはなせば、物は同じ速さで進む

未解決 回答数: 0
物理 高校生

解説は載っていますが、(1)でなぜ 1/2×9.8×0.020^2=0.010×⒐8×h という式になるのかよくわかりません。 1/2×k×x^2 と m×g×h が等しいということですか? この式で左辺と右辺がなぜイコールなのか教えてください。🙏

基本例題19 弾性力による運動 なめらかな水平面 AB と曲面 BC が続いてい る。Aにばね定数 9.8N/m のばねをつけ, その他 端に質量 0.010kgの小球を置き, 0.020m 縮めて はなす。 重力加速度の大きさを9.8m/s2 とする。 www B 基本問題 138. 146 C 0.40m (1) 小球は, ばねが自然の長さのときにばねからはなれる。 その後, 小球は,水平面 ABから何mの高さまで上がるか。 (2) 水平面 AB からCまでの高さは0.40m である。 ばねを0.10m縮めてはなすと, 小 球はCから飛び出した。 このときの小球の速さはいくらか。 指針 垂直抗力は常に移動の向きと垂直で あり仕事をしない。 小球は弾性力と重力のみから 仕事をされ, その力学的エネルギーは保存される。 (1)では, ばねを縮めたときの点と曲面上の最高点, (2)では, ばねを縮めたときの点と点Cとで,それ ぞれ力学的エネルギー保存の法則の式を立てる。 ■解説 (1) 重力による位置エネルギーの 高さの基準を水平面 AB とすると, ばねを縮め たときの点で,小球の力学的エネルギーは, 弾 性力による位置エネルギーのみである。 曲面 BC上の最高点で、速さは0であり,力学的エネ ルギーは重力による位置エネルギーのみである。 最高点の高さをん 〔m〕 とすると, x9.8×0.0202=0.010×9.8×h h=2.0×10m (2) 飛び出す速さを [m/s] とすると,点Cにお いて,小球の力学的エネルギーは,運動エネル ギーと重力による位置エネルギーの和であり、 2 ×9.8×0.10 x0.010×2 +0.010×9.8×0.40 v2=1.96=1.42 v=1.4m/s

解決済み 回答数: 2