学年

教科

質問の種類

物理 高校生

エについてです 答えはあっていましたが、イマイチすっきりしないです。 どうしてこのように言えるのか詳しく教えて欲しいです 出来れば、図解があるとありがたいです🙇‍♀️

物理 問3 次の文章中の空欄 ウ . I それぞれの直後の{ }内の数値のい ずれかが入る。入れる数値を表す記号の組合せとして最も適当なものを,後の ① ~⑨のうちから一つ選べ。 3 国際宇宙ステーションは半径が 6.4 × 10℃ km の地球の上空およそ400kmの 高さで地球の周りをほぼ等速で回っている。 重力は万有引力のみで表せて地球 の自転の影響が無視できるとすると, 国際宇宙ステーションの軌道上の地表に 対する加速度は地球の中心向きであり,その大きさは地表での重力加速度の大 (a) 0.001 E きさのおよそ ウ (b) 0.06 倍である。 (c) 0.9 地球に固定された座標系が慣性系とすると,国際宇宙ステーションの中で無 重量状態にある物体が受ける慣性力の大きさは,この物体が地表で受ける重力 (d) 0.001 のおよそ I (e) 0.06 倍で地球の中心から遠ざかる向きである。 (f) 0.9 ウ H ① (a) (a) ②a ② ③ (a) ④6 ⑤ ⑥ ⑦ ⑥ (b) (b) (b) (c) (c) (d) (e) (f) (d) _(e) (f) (d) (e) (f) 08.0 02.0 GMm 400km 6.4.10→68m² 68 64 16 5/6 17 (1) = 17 119 17 256 289 0.9 289/286 289

解決済み 回答数: 1
物理 高校生

y-x図からy-t図にするやり方を教えてください🙇‍♀️

波の性質(3) 要項 y-t図 月 日 < 10 y-t図 例題の正弦波について、 次の位置 での媒質の変位の時間変化をy-t図に表せ。 X=8m+=49 したグラフ。 図 y[m] ある位置に注目して、 媒質の変位の時間変化を表 (1)x=0m (原点) y (m) t 3. (t=3s 4.0 + での波形) -4.0- *(m) 0 1.0 2. 3.0 4.0 8.0 5.0 6.0 7.0 t(s) -3.0 図 いまはr=3s (点Cの Cの変位は-4.0m y[m〕 (2)x=2.0m T-4 4.0 OK! 媒質の動き) r(s) y [m〕 O 30 13 4 -4.0- O. 1.0 2.0 TAA 4.0 3.0 6.0 7.0 5.0 8.0 t(s) -3.0 例題 図のように正弦波がx軸上を正の向き に速さ2.0m/sで進んでいる。 位置 (3)x=4.0m x=8.0m での媒質の変位の時間変化を y-t図に表せ。 y [m] ↑ y[m〕↑ 3.0+ 2.0m/s t=0s 0 x[m] 0 1.0 2.0 3.0 4.0 810/12 14 16 -3.0+ y[m〕+ 3.0 t=1.0s - 3.0 + 810 12/14 16 5.0 6.0 7.0 8.0 t(s) 〔m〕 (4)x=6.0m y[m]↑ x[m] 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 t(s) t=2.0s =3.0s y[m〕 3.0+ -3.0 0 y[m]+ 3.0- -3.0 0 y[m]↑ /8 10 12 14/16 〔m〕 8/10 12 14 16 (5)x=16.0m 3.0- x [m] y〔m〕 t=4.0s O -3.0+ 6 810/12 14 16 0 1.0 2.0 3.0 4.0 6.0 5.0 7.0 8.0 t[s] 解 上図のそれぞれについて,x=8.0m での変 位を読みとり,それらをy-t図に点で記して, 正弦曲線で結べばよい。 (6)x=20.0m y[m] 3.0+ y[m〕↑ 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0/8.0 t[s] -3.0+ 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 t(s)

回答募集中 回答数: 0
物理 高校生

これの(7)なんですけど!なぜRは一定ってこの文から決めれるんですか?別に送電線を変えればRは変えれることないですか?

136 〈交流の送電〉 交流電圧が送電に広く用いられるのは, 変圧器によって交 ao 鉄心 流電圧を容易に上げ下げできるためである。 ここでは,電力 損失のない理想的な変圧器を考える。 図1のように, 鉄心に 2つのコイル (1次コイルの巻数がn, 2次コイルの巻数が n)を巻く。このとき, 1次コイルと2次コイルの間の相互イ ンダクタンスはMであった。 U1 b 11 112 1次コイル 図 1 2次コイル ⊿の変化するとして、次の設問に答えよ。 なお、設問(1)~(4)は n1, nz, M, ⊿t is ⊿の 時間 4tの間に1次コイルに流れる電流 in が ⊿i だけ変化したとき, 鉄心に生じる磁束が 中から必要な文字を用いて答えよ。 1次コイルに生じる誘導起電力の大きさを求めよ。 (2)2次コイルに生じる誘導起電力をv2とする。このときの比の大きさ n2 を用いて表せ。 〔A〕 V₂ [V] V2 をい V₁ (3) 2次コイルに生じる誘 導起電力 (端子 dを基準 とした端子 cの電位) v2 をMを含む式で表せ。 図 (4) 1次コイルの電流を 図2のように変化させた 2 10 5050 0 1 2 3 4 5 6 -5 t(s) S 10 0 1 2 3 4 5 6 7 t〔s] 図2 -15 図3 ときの時間変化のようすを図3に図示せよ。ただし,電流żの向きは,図1に示した 矢印の向きを正とし, M=5H (ヘンリー) であるとする。 図4のように,発電所 発電所 から送りだされた電圧 V1, 電流 L, 電力Pの交 流は,変圧器Aによって 電圧 V2,電流Izの交流 に変えられ,抵抗Rの送 電線で消費地近くの変圧 交流発電機 変電所 変電所 送電線 12 鉄心 鉄心 消費地 変圧器 A 抵抗 R V2 変圧器 B 抵抗 1次コイル 2次コイル 1次コイル 2次コイル 図 4 器Bに送られる。 送電線の終端の電圧は V3 である。 ただし, 電圧 V1, V2, V3, 電流 I, Iz は実効値である。また,ここで,電力は1周期についての平均の電力であり、1次側,2次 側ともに電圧と電流の実効値の積で表されるとする。 また, 変圧器 A, B はともに電力損失 のない理想的な変圧器である。 (5) 電圧 V3 を P, V2, R を用いて表せ。 (6)発電所から送りだされた電力Pと送電線の終端での電力P' の比,すなわち, e=- 送電効率という。送電効率e を P, Vz, R を用いて表せ。 送電効率を高くするためにはどうすればよいと考えられるか。簡潔に述べよ。 を P [九州工大 改〕

回答募集中 回答数: 0