学年

教科

質問の種類

物理 高校生

(3)はどうしてこのような式になるのでしょうか?

出題パターン 91 原子モデル そのまま 出る! ボーアの水素原子模型では,+e の電気量を持つ陽子のまわりに - の 電気量を持つ質量m の電子が,半径の円軌道上を速さで運動している ものと考える。 プランク定数をん, 真空中での光速をc, クーロン力の比例 定数をとする。 (2) 電子の運動エネルギーと電気力による位置エネルギーの和をke. (1) 電子に働く遠心力と電気力のつりあいの式を書け。 r を用いて表せ。ただし、電気力による位置エネルギーは無限遠を基準とす る。 (3)量子数をn= 1, 2, 3, …として、電子が安定な軌道を運動し続けるた めの条件を mvr, h, n を用いて表せ。 (4)安定な軌道半径rame, h,k, n を用いて表せ。 (5)エネルギー準位Enをme, h,k,n を用いて表せ。 解答のポイント! た 原子核のまわりを回る電子は粒子性と波動性の両方を持っているので,まずは 粒子として,次に波動として安定に存在できる条件を求める。 本間は試験にその まま出るので,何も見ずに と Em を導けるようにしよう。 【解法 (1) まず図 26-12 のように, 電子を陽 電位は向き× 土 子のまわりを円運動している粒子と 回る人 みなす。回る人から見た力のつりあte いの式より, クーロン力 m²² = ke² ... ①© r (2)電子の持つ力学的エネルギーE 図26-12 は運動エネルギーと電気力による位 置エネルギーの和であり, E=123mo -mv² + (-e)) 運動エネルギー 位置エネルギー この式に① ② (図 26-12 参照) を代入して 1 ke ke ke² E= = +(-e)· 2r 2 r r 遠心力 02 r ④がの位置 につくる電位は y=ke... STACE 36 と 291

未解決 回答数: 1
物理 高校生

重要問題集 物理 71 問題を解く上では必要がないのかもしれませんが、どうしても初期状態でのピストンにかかる力のつり合いが気になります。 自分で立てた式では、 P0S=M0g+P0S となってしまい、M0が0になってしまいます。 そもそも大気圧がかかる面積... 続きを読む

(火) 54 ⑨ 気体分子の運動と状態変化 必解 71. 〈気体の状態変化と熱効率〉 熱機関を利用して上昇, 下降するエレベータの 物体 M [kg] 熱効率を求めよう。 図1のように大気中で鉛直にピストン Mo[kg]- 立てられている底面積 S〔m²〕 の円柱形のシリン ダーに質量 Mo [kg] のなめらかに動くピストンが ついており,中に単原子分子理想気体が封じこめ られている。 図1のようにピストンの可動範囲は ho 〔m〕 からん 〔m〕 までである。 重力加速度の大き さを g[m/s] とする。 初期状態は,気体の温度が外部の温度と同じ h[m] ho〔m〕 初期状態単原子分子 状態 2 理想気体 図 1 To [K], 気体の圧力が大気圧と同じPo [Pa〕, ピストンの高さがん 〔m〕 である。 まずビ ストンの上に質量 M [kg] の物体を乗せ、シリンダー内の気体に熱を与える。 しばらく静止 し続けた後, ピストンが動きだした。 この動きだしたときの状態を状態1とよぶ。 さらに熱し続けるとゆっくりとピストンは上昇し, 高さがん 〔m〕 に達した。 このときの状 態を状態2とよぶ。 状態2になった瞬間に物体をピストンから降ろすとともに熱を与えるの をやめた。ピストンはしばらく静止し続けたが,やがてゆっくりと下降し, 高さがん [m] となったところで静止した。 さらに時間がたつとシリンダー内の気体の温度がT [K] にな ったところで初期状態にもどり,この熱機関はサイクルをなす。 (1)状態1のシリンダー内の気体の温度を求めよ。 (2) 初期状態から状態までに気体に与えられた熱量を求めよ。 [Pa] (3)状態2のシリンダー内の気体の温度を求めよ。 (4)状態1から状態2までに気体に与えられた熱量を求めよ。 (5) 気体の体積をVとするとき,このサイクルのか-V図を図2にかけ。 (6)このサイクルで熱機関が外にした仕事を求めよ。 (7) このサイクルの熱効率を求めよ。 図2 V[m³] (8)M=2Mo, Mo- PoS g h=2h の場合の熱効率の値を求めよ。 [12 弘前大〕 B 応用問題 ◇72. 〈半透膜で仕切られた2種類の気体〉 思考) 図1のようにピストンのついた 2 領域 1

未解決 回答数: 0
物理 高校生

(3)の解説の変化量のところがわからないです。変化量はどうやって出しているのですか

したがって, 比熱の比は、 例題 S 混合気体 ~ Sast 9912 (5)融解曲 25 29 容積 2.0L, 4.0Lの容器 A, Bが,図のよ うに連結されている。 容器Aにはメタン, 容 器Bには酸素を入れて,ある温度にすると, 圧力はそれぞれ3.0×105 Pa, 6.0×105 Pa だった。コックを開けて気体を混合し、点火 して完全に反応させた後, 元の温度に戻した。 連結管やコック,および, 生じる水 の体積や、水蒸気の蒸気圧は無視してよい。 分子量 CH4=16.0,O2=32.0 点火装置 容器B A 20 想気 (a) f 2.0L 4.0L コック (b) 2 の の (c)】 (1) 反応前の混合気体中のメタンの分圧は何 Paか。 (d) (2) 反応前の容器内の全圧は何Paか。 (3) 反応後の容器内の全圧は何Paか。 KeyPoint 点火前後で温度一定: メタンと酸素のそれぞれにボイルの法則が成立する。 同温同体積 : 圧力比は物質量比に等しい。 ●センサー ●温度一定より, ボイル の法則 piVi=P2V2 ●全圧=分圧の和 ●同一容器内の気体の圧 力比は物質量比に等し い。 →反応による変化量を 圧力で示す。 重要 (1) C 解法 (1) (2) 気体についてボイルの法則が成立する。 混合 後の各気体の分圧を PCH4, Po2 とすると, 混合気体の体積は 6.0Lなので, (2 CH4 : 3.0×10 Pa×2.0L=PcH.〔Pa〕×6.0L PcH=1.0×105 Pa O2 :6.0×10 Pa×4.0L=po〔Pa〕×6.0L Po2=4.0×10 Pa 全圧は,1.0×105 Pa+4.0×10°Pa=5.0×10 Pa (3) 反応前後の物質の量的関係を分圧で考える。 08. CH4 +202 CO2 +2H2O (s) 反応前 〔Pa〕 1.0×105 4.0×100005 変化量〔Pa〕 -1.0×10 -2.0×105 反応後 〔Pa〕 0 2.0×105 1.0×105(無視) 反応後の全圧は、2.0×10 Pa+1.0×105 Pa=3.0×10 Pa 解答 (1)1.0×10 Pa (2)5.0×10 Pa (3)3.0×105 Pa [mL〕| | ル・シャルルの法則 重要

回答募集中 回答数: 0