学年

教科

質問の種類

物理 高校生

⑵の解説のなぜP1とP2 が図のように振動するのかがわかりません。教えてください

-40 -43 0.98~101 EN (開 r [解説] √=fR V 考察 B5⑤ 158 (1) 考察A: 3③ 考察 C⑧ (2) 4 (3) 3 注目する。 指針 初めて見る実験題材は,発生する現象を問題文から読み取るこ とが重要。 この問題は共鳴の問題であるから,定在波の腹節の位置に 1000≧ 73346 1000 (2) 観察・実験Ⅰ・Ⅱより,パイプ おんさ P1,P2 から発生する音波 の振動数はいずれも1000 Hz 以下 であるから、その波長は 0.34m 340 以上である。 したがって, P1, P2 入 270.34 (1) 考察 A: パイプおんさ P1, P2 を同時に鳴らせたとき, 1 パイプおんさ Pi. P2はU 秒間のうなりの回数は1回未満であったことは, 字型の加工部分が共通して P1, P2 の振動数の差が1Hz 未満であることを示いるため, 発注する音波の している。 よって ③ 振動数は一致している。 Pi 考察 B: パイプおんさ Pi の下端(開口部)を手でふさい で閉管にしたとき共鳴音が大きくなったことは, 下端(開口部) 付近が定在波の節の位置であること を示している。 よって, ⑤ 考察 C : パイプおんさP2 の下端(開口部) を手でふさい で閉管にしたとき,共鳴音が小さくなったことは、 下端(開口部) 付近が定在波の腹の位置であること を示している。よって, ⑧ 3 の長さの差16cmの間に一波長 4 2.30** 23cm 251 P1 P2 WALIT 158) センサー44 センサー 45 16 cm 開口端補正 が含まれている可能性はないので、 気柱内に生じる定在波は図のよう になる。 開口端補正を1.0cm 程 度と仮定しているので,発生する 音波の波長は -x3=16 入 = (16+1.0)×4=68[cm]=0.68〔m〕 7:16/1/u=faより P1 のおおよその振動数は, 340 21.3cm [f= +=500[Hz] ④ 0.68 70,21m (3) 下端(開口部)を手でふさいだときに音量が大きくなる位置 (3) 20.4は、定在波の節の位置である。その位置はパイプおんさ P1 をみたしていたより=波長(34 cm)程度長い位置である。よって,③ 39cm (音波変位で 表している) ^ 4 p が節だと ちゃんと共鳴して 音大きくなる 16cm+1g 1.7-4 0.0 0.8 23cml 134c 各8cm t = (C sirve (2)より 7=6 132

回答募集中 回答数: 0
物理 高校生

⑶の解説に[半波長ののm倍が円周の長さ0.25πに等しい]と書いてあるのですがなぜそうなるか教えてください

応力を磨く 解答編p.8 156 実験結果の解説を理解して考察するアウタイ ( 励振器 (バイブレーター) にループピアノ線 (直径25cm) を取りつけて振動させると ループピアノ線に沿って時計回りと反時計回りの振動が伝わり, 励振器の振動数を調整 すると円周上に定在波が生じる (図1)。 この定在波の発生について,以下の問いに答え よ。 0 第Ⅲ部 波 図1 ループピアノ線に生じた定在波 ( 腹の数が6個の定在波) [U ...... 0900 00000 ·m m 0 0 V V f(Hz) 150 100 (1) ループピアノ線に腹の数が6個の定在波が生じているとき, 励振器の振動数は 90 Hz であった。 ピアノ線を伝わる波の速さを求め, 円周率πを用いて答えよ。 (2) 直線に張った弦をはじくと張力によって振動するが,ループピアノ線は曲げによる 変形に対する応力によって振動する。 このため, ループピアノ線の振動は腹の数と振 動数が比例関係を示さず, 振動数fは腹の数の2乗にほぼ比例することが知られ ている (図2)。腹の数が2個 8個のときの振動数をそれぞれ推定せよ。 (3) 励振器の振動がループピアノ線を伝わるときの波の速さ”と腹の数の関係とし て,最も適切なグラフを下記の①~⑥から選び番号で答えよ。 1 50 0 (5) 腹の数mと振動数の関係 0 2 8 腹の数m[個] 図2 ループピアノ線の定在波の腹の数と 振動数fの関係 m 4 +m 6 0円 V m 221 HA

回答募集中 回答数: 0
物理 高校生

物理の問題です 特に苦手な電流なのでお時間ある方教えて下さると嬉しいです。よろしくお願いします(><)

以下の各問に答えなさい。 途中経過が略されている場合、 単位の取扱が不適切な場合には減点する。 2023.4.20/21 第1回レポート 1. 右図の様な断面積Sの導線の軸方向に電場を与え たとする。このとき、電荷e (e>0) の電子が、軸 負方向に一定の速さで運動したとする。 導線の伝 導電子密度をn とするとき、以下の問に答えなさい。 I (1) 時間間隔 At の間に導線の断面 A を通じて運ばれる電荷の大きさAQ を、 S, n, e, v, At 等を用い て表しなさい。 2. 等しい抵抗をもつ12本の抵抗を、 右図のように接続した。 (1) D, F 間の合成抵抗を求めなさい。 (2) A, Ⅰ間の合成抵抗を求めなさい。 (2) 導線を流れる電流の大きさを、 S, n, e, 0, At 等を用いて表しなさい。 次に、 上の導線が断面積 S = 1.0mm²の銅製の導線であり、流れた電流が I = 1.0A であったと する。このとき以下の各問に有効数字2桁で答えなさい。 ただし、 銅の原子量は64 (すなわち、 銅 1mol あたり 64g)、密度はp=8.9x103kg/m3である。 (3) 銅原子1個の質量を求めなさい。 ただし、 アボガドロ数は NA=6.0×1023 である。 (4) 銅 1.0m² の質量m を求めなさい。 (5) 銅 1.0m²に含まれる銅原子の数を求めなさい。 (6) 銅原子1個が自由電子1個を放出すると仮定して、 銅の伝導電子密度 n を求めなさい。 (7) を求めなさい。 ただし、 e = 1.6 x 10-19C である。 10 S 1₁ 1₁ 図1 ヒント: 下図のように起電力 Vの電源を接続したとき、 電流Iが流れたとする。 (1) 回路の対称性から、 例えば、 図1のように、 電流 I 〜 Is と推定することができる。 対称性から、 B点、 E点 H点の電位は? すると、 Is が求まり、I2がIⅠ を用いて、 また、 Is が I を用いて表される。 D点にキ ルヒホッフの第1法則を、 閉回路 DABCFED にキルヒホッフの第2法則を用いると、 L1, I4 を I で表す事 ができる。 閉回路 PQDEFP にキルヒホッフの第2法則を適用することで、 R =V/Iが求められる。 (2) 回路の対称性から、 例えば、図2のように、 電流 I1, I2, Is と推定することができる。 このとき、A点、 B点でキルヒホッフの第1法則、 閉回路BCFE でキルヒホッフの第2法則を用い、 電流 In, In, Is を I を用 いて表す。 閉回路 PQADGHIP にキルヒホッフの第2法則を適用することで、 R=V/Iが求められる。 I A D 47 図2 E 40 11 P

回答募集中 回答数: 0
物理 高校生

物理の課題です(><) 1番だけでもすごく助かります! 特にこの単元は電流で苦手なところなので、時間のある方、教えていただけると嬉しいです。

以下の各問に答えなさい。 途中経過が略されている場合、 単位の取扱が不適切な場合には減点する。 2023.4.20/21 第1回レポート 1. 右図の様な断面積Sの導線の軸方向に電場を与え たとする。このとき、電荷e (e>0) の電子が、軸 負方向に一定の速さで運動したとする。 導線の伝 導電子密度をn とするとき、以下の問に答えなさい。 I (1) 時間間隔 t の間に導線の断面 A を通じて運ばれる電荷の大きさ AQ を、 S, n, e, v, At 等を用い て表しなさい。 2. 等しい抵抗をもつ12本の抵抗を、 右図のように接続した。 (1) D, F 間の合成抵抗を求めなさい。 (2) A, Ⅰ間の合成抵抗を求めなさい。 S (2) 導線を流れる電流の大きさを、 S, n, e, v, At 等を用いて表しなさい。 次に、 上の導線が断面積 S = 1.0mm²の銅製の導線であり、 流れた電流が I = 1.0A であったと する。このとき以下の各問に有効数字2桁で答えなさい。 ただし、 銅の原子量は64 ( すなわち、 銅 1mol あたり64g)、密度はp=8.9x103kg/m3である。 (3) 銅原子1個の質量を求めなさい。 ただし、 アボガドロ数は NA=6.0×1023 である。 (4) 銅 1.0m² の質量 m を求めなさい。 (5) 銅 1.0m² に含まれる銅原子の数を求めなさい。 (6) 銅原子1個が自由電子1個を放出すると仮定して、 銅の伝導電子密度を求めなさい。 (7) v を求めなさい。 ただし、 e = 1.6 x 10-19C である。 図1 P A D 図2 B ヒント: 下図のように起電力 Vの電源を接続したとき、 電流Iが流れたとする。 (1) 回路の対称性から、 例えば、図1のように、 電流 ~ Is と推定することができる。 対称性から、B点、 E点 H点の電位は? すると、 Is が求まり、 I が I を用いて、 また、 Is が I4 を用いて表される。 D点にキ ルヒホッフの第1法則を、 閉回路 DABCFED にキルヒホッフの第2法則を用いると、L1, I4 を I で表す事 ができる。 閉回路 PQDEFP にキルヒホッフの第2法則を適用することで、 R = V/I が求められる。 (2) 回路の対称性から、 例えば、図2のように、 電流 I1, I2, Is と推定することができる。 このとき、 A点 B点でキルヒホッフの第1法則、 閉回路 BCFE でキルヒホッフの第2法則を用い、 電流 I, I2, Is を I を用 いて表す。 閉回路 PQADGHIP にキルヒホッフの第2法則を適用することで、 R=V/Iが求められる。 V 1 F ▬

回答募集中 回答数: 0
物理 高校生

この問題の問3の解き方を教えてください!

原子核に関する次の文章を読み、以下の問い (問1~問3) に答えよ。 原子核の中には, 放射線を放出して崩壊する放射性原子核が存在する。 この崩壊現象の中 でも、アをα線として放出する現象をα 崩壊, イ をβ線として放出する現象を β崩壊という。これらの放射性崩壊は,ある一定時間Tごとに原子核の個数が半減する。 というように起きる。つまり、初めに N 個の放射性原子核が存在していると、それから 時間の後に残っている放射性原子核の個数 N(1)は N(1) = N₁ ( 1 ) + となる。このTを半減期とよぶ。 1Cは、T = 5700年の放射性原子核であり、大気中に存在する 'Cに対する 'gCの個数の は、ほぼ一定であることが知られている。 このVCCは,' C といっ YCCの個数 比率 R= 12Cの個数 しょに光合成や食物連鎖を通して生物体内に取りこまれるため, 生物が生きている間は, 体内のRは一定に保たれるが, 生物が死んで活動を停止すると, それ以後の取りこみは 行われず、R は 'CC の崩壊により減少していく。したがって、生物体内での R を測定す ることによって, その生物が活動を停止してからの時間を推定することができる。 これ が1gCによる年代測定の原理である。 'Cは崩壊することにより Nとなる。よって、このCの崩壊現象はウであると わかる。 問1 文章中の空欄 に入れる語句として最も適当なものの組合せを次 の①~ ⑧ のうちから1つ選べ。 イ ウ 陽子 α崩壊 陽子 β崩壊 電子 α 崩壊 電子 β崩壊 ① ② ③ ア H 空空空空 H H H ア He He ⑦ He He ⑤ イ ||陽子 |陽子 電子 電子 ウ α 崩壊 β崩壊 α崩壊 β崩壊 1 問2 Csは T=30.1年の放射性原子核である。 その個数がもとの 1024 倍になるのに 何年必要か。 最も適当な値を、次の①~⑤のうちから1つ選べ。 ① 3.01 ② 30.1 ③ 3.01 x 102 ④ 3.01 x 103 ⑤3.01 x 10* 3 ある遺跡で見つかった木片の R を測定したところ, 新しい木の であった。この 8 木片が活動を停止してから何年経過したか。 最も適当な値を,次の ①~⑤のうちか ら1つ選べ。 ①7×102 6×103 ③1×10^ ④2×10^ $ 5×10

解決済み 回答数: 1
物理 高校生

マーカーで印をしたところの解説がイマイチよくわかりません。グラフの意味もあまりピンとこないです。 詳しく教えてほしいです。 また、できれば別解があれば教えてほしいです。

十反 初理 う 支点0(ビン) の た。I。の最大値はいくらか(キ)。また ω を R, L, Co. Ve のうち必要なものを使って表 せ(ク)。 のの 棒A の 棒B (配点率 33 %) の ao 小球B OP の 小球A はう R 図3 Og C= 子の II 図1に示すように,抵抗値 R の抵抗,自己インダクタンス Lのコイル,電気容量 C の平 bo かをつ 行板コンデンサー,スイッチ Sからなる回路がある。平行板コンデンサーは極板間の距離 x 図1 を変えることができる。極板問距離 x = d のときの電気容量を C = Co とする。最初,コン デンサーに電荷は蓄えられておらず極板間距離は x =d であり,スイッチは開いている。 テの物 -OP まず,端子 a-b 間に起電力 E の直流電源を接続した(図2)。抵抗に電流が流れ始め,その 後十分長い時間が経過すると,電流が流れていないとみなせるようになった。 R (1) 電流の最大値はいくらか(ア)。また最終的にコンデンサーに蓄えられた電気量はいくら 99 S E- か(イ)。 Cニ 次に,直流電源をはずしてスイッチを閉じたところ,コイルに振動電流が流れる現象(電気振 bo 動)が観測された。 (2) 電気振動の周期 T はいくらか(ゥ)。またコイルを流れる電流の最大値はいくらか(エ)。 図2 その後,端子 a-b 間を導線でつなぐと抵抗に電流が流れ始め,十分長い時間が経過した後, 電流が流れていないとみなせるようになった。 P (3) この間に抵抗でジュール熱として消費されたエェネルギーはいくらか(オ)。 R V。 今度は,端子 a-b 間の導線をはずしスイッチを開いて,端子p-q 間に電圧の実効値 V。 be の交流電源を接続した(図3)。抵抗を流れる電流の実効値を I。として,以下の操作により電源 の角周波数 を推定することを考える。 (4) コンデンサーの極板をゆっくりと動かし極板間距離 x をdよりも小さくしたところ, 動 C = bo かす前より I。が大きくなった。このことから推定される は問い(2)の電気振動の角周波 図3 数より大きいか小さいか。 ω と問い(2)の T の関係を不等式で示せ(カ)。 としたところで I。が最大となっ 4 (5) さらにコンデンサーの極板をゆっくりと動かしx=

回答募集中 回答数: 0
物理 高校生

アがなぜ反時計回りになるか分かりません コイルは時計回りに巻かれてて、Aの方が高電位だから時計回りに電流を流そうとしているんじゃないですか?

問3 次の文章は,図8の結果から落下中の磁石の向きを推定する過程を述べた に入れる語句の組合せとして B 図7のように, アクリルバイプを鉛直に立て, その下端付近にコイルを設置」 た。コイルは、端子Aから端子Bへ上から見て時計回りに巻かれている プの上端付近で円柱状の磁石を静かに放し落下させ、コイルの端子Bを基海」 した端子Aの電位(電圧)1/をオシロスコープで観察する。磁石の上面がコィ。 の上端に達するまでの落下距離をhとする。h=30 cm のときの結果は、図。。 ようになった。ただし, 時間軸の原点は V=100 mVになった瞬間に設定さ ものである。文章中の空欄 ア ウ 最も適当なものを,下の0~®のうちから一つ選べ。 3 図8では,山が最初に現れることから,磁石がコイルに近づいてきたとき 端子Aの電位が端子Bの電位より高くなったことがわかる。このとき,コ イルには上から見て アの電流を流そうとする向きに誘導起電力が生じ ている。 ていた。それは,コイルを上から下に貫く磁束が ィしたからである。 磁石 したがって、磁石が ウ を下にして近づいてきたことがわかる。 10mm 得しい中ーう ア イ ウ アクリルバイプ h 時計回り 増加 N極 時計回り 増加 S極 時計回り 減少 N極 増子 コイル 10mm 時計回り 減少 端子B: 反時計回り 増加 N極 (そ。 反時計回り 増加 S極 図 7 反時計回り 減少 N極 反時計回り 減少 S極 V(mV) 200 > F-ma tCms) 30 -20 100 10 20 30 -100 -200 (9(3) 学 Z

解決済み 回答数: 1
物理 高校生

良問の風136問1、2についてです。問一では有効数字2桁で求めているのに対し、問2では有効数字3桁で求めているのはなぜですか?

下する油滴を顕微鏡で観察し,電気素量e[C]を測定した。密度p(kg/ 霧吹き 口に語句または式を記し, 問 136 いに答えよ。 電気量には最小の単位があり,全ての 電気量はその整数倍になっている。この 最小単位を電気素量といい, これは ()のもっている電気量の大きさに 等しい。ミリカンは, 図1のような装置 に霧吹きから油滴を吹き込み,間隔d[m]の平行な極板 A, Bの間を」 下する油滴を顕微鏡で観察し, 電気素量e[C]を測定した/密度p[ko/ m), 半径r[m]の球形の油滴の運動を考える。重力加速度をg[m/) とし,空気の浮力は無視する。 油滴は極板間に電場がないときは, 重力と空気の抵抗力を受けて、熱 「 直下向きに一定の速さ(終端速度)u [m/s]で落下する。空気の抵抗力は ことuの積に比例するので, 比例定数をkとすると,この抵抗力と重 力のつり合いの式は ]と書ける。 油滴は一般に帯電している。その電気量をg [C]とする。Aに対するBの電位をV[V](V>0) とすると,油滴は図2に示すように, 鉛直上向き に一定の速さ p.[m/s]で上昇した。このときのつ り合いの式は反(のとなる。 (イ)と(ウ)よりgはu, Us d, r, k, Vを用いて, q= DE) 油 油滴 SAS; 線 B 図1 A- 0 (V] - B= V (V) 図2 れる。 Pと表さ 問)密度 855 kg/m'のパラフィン油を用いて測定したところ, ある油 滴のひは3.0×10- m/s であった。 kは3.41×10-kg/m·s なので,

解決済み 回答数: 1